Файл: Ersoy O.K. Diffraction, Fourier optics, and imaging (Wiley, 2006)(ISBN 0471238163)(427s) PEo .pdf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 28.06.2024

Просмотров: 934

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

278

DIFFRACTIVE OPTICS II

Figure 16.2. The telescopic system.

The second example is the telescopic system shown in Figure 16.2. Here f equals 1 so that the virtual reference wave is planar. Using two lenses with focal lengths f1 and f2 yields

A0

 

1

¼

f2

 

 

 

¼

 

 

 

 

 

 

 

ð16:2-13Þ

F

f1

B0

¼ f1 þ f2

 

 

 

 

 

 

ð16:2-14Þ

C0

¼ 0

 

 

 

 

 

 

 

 

 

 

 

ð16:2-15Þ

D0

¼ F

 

 

 

 

 

 

 

 

ð16:2-16Þ

such that

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

¼

 

f2

 

 

 

M ¼

 

 

 

 

 

ð16:2-17Þ

F

f1

T

 

 

 

f1 þ f2

 

 

T1

 

16:2-18

 

2

¼

 

F2

ð

Þ

 

 

 

F

 

 

 

It is seen that M is independent of the real hologram coordinates, and, if F is large, T2 is insensitive to T1.

The third example is the lensless Fourier arrangement discussed in Section 13.3. It is obtained when the point O of Figure 16.1 lies on the image plane. If z0 is the

distance from the virtual hologram to the image plane, we have

 

A

¼ ðT2 þ z0Þ

ð16:2-19Þ

C

16.2.2Aperture Effects

In order to obtain effective diffraction from the virtual hologram, it is desirable that virtual hologram apertures spread waves as much as possible. An interesting observation here is that aperture size may not be important in this context, since the virtual hologram is not to be recorded. In other words, even if virtual hologram


VIRTUAL HOLOGRAPHY

279

apertures are overlapping, diffraction effects at a distance can be explained in terms of waves coming from point sources on the virtual hologram to interfere with each other in the volume of interest.

Spreading of waves can be discussed in terms of v1 and v2, the angles a ray makes at two reference planes. From Eq. (16.2-2) we find

v2 ¼ C0x1 þ D0v1

ð16:2-20Þ

In the imaging planes, the following is true:

 

C0

1

 

ð16:2-21Þ

¼

 

 

 

f

D0

1

 

 

 

ð16:2-22Þ

¼

 

 

M

It follows that spreading of waves increases as f and M are reduced. In the telescopic system, C0 ¼ 0, and the input spreading of waves coming from an aperture is increased at the output by a factor of 1/M.

In order to find the size of the virtual hologram apertures, both magnification and diffraction effects need to be considered. The size of a virtual hologram aperture dv can be written as

dv ¼ Mdr þ D

ð16:2-23Þ

where dr is the size of the real hologram aperture, and D is the additional size obtained due to diffraction coming from the limited size of the optical system. For example, in the telescopic system, D can be approximated by [Gerrard and Burch, 1975]

D ¼

2:44f l

ð16:2-24Þ

dA

where dA is the diameter of the telescope objective, and f is its focal length.

16.2.3Analysis of Image Formation

Analysis of image formation can be done in a similar way to the analysis of image formation in Section 15.8 on one-image-only holography. We assume that the contributions of various reference waves result in an effective reference wave coming from the point ðxc; yc; zcÞ. This can always be done within the paraxial approximation. If ðxi; yi; 0Þ are the coordinates of a sample point on the virtual hologram, and ðx0; y0; z0Þ are the coordinates of an object point, the equation that determines the positions of various image harmonics is given by

 

i

rc

þ r0

 

 

i

yc

þ y0

þ

 

2

r0 þ rc

¼

 

l þ

2p

 

0c

x

 

 

xc

x0

 

y

 

yc

y0

 

xi2

þ yi2

1 1

 

 

n

 

fl

F

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ð16:2-25Þ


280

DIFFRACTIVE OPTICS II

where f is some constant phase, and

 

F0c ¼ r0 þ rc

ð16:2-26Þ

r0 ¼ ðx02 þ y02 þ z02Þ21

ð16:2-27Þ

where þð Þ sign is used if the object point is real (virtual) with respect to the virtual hologram, and

1

rc ¼ ðx2c þ y2c þ z2c Þ2 ð16:2-28Þ

where þð Þ sign is used if the focal point of the reference wave comes before (after) the virtual hologram.

If Eq. (16.2-25) is divided by M, we find that the real hologram is designed for the object coordinates

r00

¼

r0

 

ð16:2-29Þ

M

x00

¼

x0

 

ð16:2-30Þ

M

y00

¼

y0

 

ð16:2-31Þ

M

z00

¼ ðr002 x002 y002Þ

ð16:2-32Þ

and the reference wave originating from

 

rc0

¼

rc

ð16:2-33Þ

 

 

M

xc0

¼

xc

 

ð16:2-34Þ

M

yc0

¼

yc

 

ð16:2-35Þ

M

zc0 ¼ ðrc02 xc02 yc02Þ

ð16:2-36Þ

and the wavelength

 

 

 

 

l0

¼

l

 

ð16:2-37Þ

M

If a reconstruction wave coming from ðx00c ; y00c ; z00c Þ and with wavelength l is used, the mth harmonic without the optical system will be reconstructed at

1

 

 

 

1

 

1

 

 

 

 

 

m 1

 

 

 

 

 

 

 

r000

¼

M2

 

r0

þ

rc

 

rc00

 

 

 

ð16:2-38Þ

x000

¼ r000 mM

x0

þ

xc

 

xc00

 

 

 

 

 

 

 

ð16:2-39Þ

r0

rc

rc00

y000

¼ r000 mM

y0

þ

yc

 

yc00

 

 

 

 

 

 

 

ð16:2-40Þ

r0

rc

rc00


VIRTUAL HOLOGRAPHY

281

Equations (16.2-38)–(16.2-40) indicate that there is also another object distorted with respect to the desired object. In analogy with the concept of virtual hologram, it will be called the virtual object. This means that we can start either from the virtual hologram to generate the real object or from the real hologram to generate the virtual object. It looks like it is easier to use the virtual hologram concept in most cases. However, there are occasions when it is more advantageous to use the virtual object

concept.

 

 

 

 

wave (xc ¼ yc ¼ 0), Eqs.

Assuming plane perpendicular

reconstruction

(16.2-38)–(16.2-40) for the first harmonic reduce to

 

r000

¼

R

ð16:2:41Þ

 

r0

M

x000

¼ Rx0

ð16:2:42Þ

y000

¼ Ry0

ð16:2:43Þ

R ¼

 

rc

 

ð16:2:44Þ

Mðz0 þ rcÞ

The last four equations indicate one computational advantage that can be achieved, namely, the use of convolution to determine the hologram. In digital holography, normally the hologram is much smaller than the image. Convolution requires the image and hologram sizes to be the same. With this method, one can obtain equal sizes by choosing R properly. For the case of a single lens, this is satisfied by

f

 

R ¼ r0 þ rc

ð16:2:45Þ

The appearance of various holograms and objects in this case is shown in Figure 16.3.

Figure 16.3. Virtual and real holograms and objects.