Файл: Ersoy O.K. Diffraction, Fourier optics, and imaging (Wiley, 2006)(ISBN 0471238163)(427s) PEo .pdf
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 28.06.2024
Просмотров: 915
Скачиваний: 0
THE PROJECTION SLICE THEOREM |
329 |
Proof:
1ð
Pðf Þ ¼ pðuÞe j2pftudu
1
ðð1
¼gðu cos y v sin y; u sin y þ v cos yÞe j2pfudvdu
1
In the unrotated coordinate system, this is the same as
ðð1
Pð f Þ ¼ |
gðx; yÞe j2pð fx cos yþfy sin yÞdxdy |
1
¼ Gðf cos y; f sin yÞ
EXAMPLE 18.1 Find the Radon transform of gðx; yÞ ¼ e x2 y2 :
Solution:
ðð1
pðu; yÞ ¼ e x2 y2 dðu x cos y y sin yÞdxdy
1
Since the transformation ðx; yÞ ! ðu; vÞ as given by Eq. (18.2-1) is orthonormal, x2 þ y2 ¼ u2 þ v2. Hence,
1ð
p |
u; |
yÞ ¼ |
e u2 e v2 dv |
ð |
|
|
1
¼ ppe u2
EXAMPLE 18.2 Find the Radon transform of gðx; yÞ if |
|
|
||||||||||||
g |
x; y |
ð |
1 |
|
x2 |
y2Þl 1 |
x2 þ y2 < 1 |
|
|
|||||
ð |
Þ ¼ |
|
|
|
0 |
|
|
|
otherwise |
|
|
|||
Solution: gðx; dyÞ is nonzero inside the unit circle. Since x2 |
þ y2 |
¼ u2 þ v2, the |
||||||||||||
|
|
|
|
p |
|
|
2 |
|
|
|
|
|
||
limits of integration with respect to u are |
|
p1 u2. Thus, |
|
|
||||||||||
|
p u; y |
|
|
|
|
1 |
|
u2 |
v2 l 1dv |
|
|
|||
|
|
|
|
|
1 u |
|
|
|
|
|
|
|
||
|
ð |
Þ ¼ |
|
ð |
|
½ |
|
|
& |
|
|
p
1 u2
330 COMPUTERIZED IMAGING II: IMAGE RECONSTRUCTION FROM PROJECTIONS
The following definite integral can be found in [Erdelyi]:
|
ð ða2 t2 |
Þl 1dt ¼ |
|
|
1ð Þ |
|
|||||
|
a |
|
|
|
|
|
a2l 1pp l |
||||
|
a |
|
|
|
|
|
|
l þ |
|
|
|
|
|
|
|
|
|
|
2 |
|
|||
Utilizing this result above yields |
|
|
|
|
|
|
|
||||
p u; y |
8 |
ð |
1Þ |
ð1 u2Þl 1=2 |
1 < u < 1 |
||||||
|
> |
pp |
l |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ð Þ ¼ |
< |
|
|
|
|
|
|
|
|
|
|
> |
l þ |
2 |
|
|
|
|
|
|
|
||
|
> |
|
|
|
|
|
|
|
|
|
|
|
> |
|
|
|
|
|
|
|
|
|
|
|
: |
|
|
|
|
|
|
|
|
|
|
0otherwise
18.4THE INVERSE RADON TRANSFORM
The 2-D FT representation of gðx; yÞ is given by
|
gðx; yÞ ¼ |
ðð Gðfx; fyÞej2pðfxxþfyyÞdfxdfy |
ð18:4-1Þ |
||
|
|
|
|
1 |
|
|
|
|
|
1 |
|
Converting ð fx; fyÞ to polar coordinates ð f ; yÞ gives |
|
||||
p |
1 |
|
|
|
|
gðx; yÞ ¼ ð |
ð |
Gðf cos y; f sin yÞej2pf ðx cos yþy sin yÞjf jdf dy |
ð18:4-2Þ |
||
0 |
1 |
|
|
|
|
Since Pðf Þ ¼ Gðf cos y; |
f sin yÞ, this is the same as |
|
|||
|
|
p |
1 |
fPðf Þsgnðf Þej2pf ðx cos yþy sin yÞdf dy |
|
gðx; yÞ ¼ ð |
ð |
ð18:4-3Þ |
|||
|
|
0 |
1 |
|
|
By convolution theorem, with u ¼ x cos y þ y sin y, the first integral is given by
1 |
|
|
|
|
|
|
e j2pfudf |
|
1 |
|
@ |
|
|
|
|
|
1 |
|
|
|
fP |
|
f |
|
sgn |
f |
|
|
|
|
p u |
|
|
|
|
||||||
ð |
Þ |
Þ |
¼ |
2jp @u |
Þ |
jpu |
||||||||||||||
ð |
|
|
ð |
|
ð |
|||||||||||||||
1 |
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
ð18:4-4Þ |
|||||
|
|
|
|
|
|
|
|
¼ 2p2 |
ð |
|
|
@@ðttÞ u t dt |
||||||||
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
p |
1 |
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|