Файл: Ersoy O.K. Diffraction, Fourier optics, and imaging (Wiley, 2006)(ISBN 0471238163)(427s) PEo .pdf
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 28.06.2024
Просмотров: 889
Скачиваний: 0
396 |
APPENDIX C: THE DISCRETE-TIME FOURIER TRANSFORM |
where N2 equals N/2. It is observed that U1½k& and U2½k& are computed by DFTs of size N/2 with the even and odd-numbered points of the original signal.
The procedure described above is continued iteratively until reaching size 2 DFT, which consists of adding and subtracting two points.
The radix-2 decimation-in-frequency algorithm can be similarly developed. However, its implementation turns out to me more complex.
The 2-D FFT is obtained from the 1-D FFT by applying the 1-D FFT first to the rows of a signal matrix, and then to its columns or vice versa.
398 |
REFERENCES |
Burckhardt, C. B., ‘‘Use of a Random Phase Mask for the Recording of Fourier Transform Holograms of Data Masks,’’ AppIied Optics, 9, 695–700, 1970.
Caulfield, H. J. and S. Lu, The Applications of Holography, Interscience, New York, 1970.
Chu, D. C., J. R. Fienup, J. W. Goodman, ‘‘Multi-emulsion On-Axis Computer Generated Hologram,’’ Applied Optics, 12, 1386–1388, 1973.
Collier, R. J., C. B. Burckhardt, and L. H. Lin, Optical Holography, Academic Press, New York, 1971.
Cutrona, L. J., E. N. Leith, C. J. Palermo, L. J. Porcello, ‘‘Optical Data Processing and Filtering Systems,’’ IRE Tran. Information Theory, 386–400, June 1960.
Dittman, J., L. C. Ferri, C. Vielhauer, ‘‘Hologram watermarks for document authentications,’’
International Conference on Information Technology: Coding and Computing, 60–64, April 2001.
Doles, J. H., ‘‘Broad-Band Array Design Using the Asymptotic Theory of Unequally Spaced Arrays,’’ IEEE Tran. Antennas and Propagation, Vol. 36, No. 1, 27–33, January 1988.
Dragone, C., ‘‘An N N Optical Multiplexer Using a Planar Arrangement of Two Star Couplers.’’ IEEE Photon. Technol. Lett. 3, 812–815, September 1991.
Erdelyi, A., Tables of Integral Transforms, McGraw Hill, New York, 1954.
Ersoy, O. K., ‘‘Construction of Point Images with the Scanning Electron Microscope: A Simple Algorithm,’’ Optik, 46, 61–66, September 1976.
Ersoy, O. K., ‘‘One-Image-Only Digital Holography,’’ Optik, 53, 47–62, April 1979.
Ersoy, O. K., ‘‘Real Discrete Fourier Transform,’’ IEEE Transactions Acoustics, Speech, Signal Processing, ASSP-33, 4, 880–882, August 1985.
Ersoy, O. K., J. Y. Zhuang, J. Brede, ‘‘Iterative Interlacing Approach for the Synthesis of Computer-Generated Holograms,’’ Applied Optics, 31, 32, 6894–6901, November 10, 1992.
Ersoy, O. K., ‘‘A Comparative Review of Real and Complex Fourier-Related Transforms,’’ Proceedings of the IEEE, 82, 3, 429–447, March 1994.
Ersoy, O. K., ‘‘Method of Increasing Number of Allowable Channels in Phased Array DWDM Systems,’’ USA Patent No. 6917736, July 12, 2005.
ESA, ‘‘Satellite Data Yields Major Results in Greenland Glaciers Study,’’ ESA website, http://www.esa.int/esaEO/SEMH59MVGJE_index_0.html, February 21, 2006.
Farhat, N. H., Advances in Holography, Marcel Dekker, New York, 1975.
Feit, M. D. and J. A. Fleck, Jr., ‘‘Light propagation in graded-index optical fibers,’’ Applied Optics, 17. 24, 3990–3998, December 15, 1978.
Feldman, M. R.; J. E. Morris, I. Turlik, P. Magill, G. Adema, M. Y. A Raja, ‘‘Holographic Optical Interconnects for VLSI Multichip Modules,’’ IEEE Tran. Components, Packaging and Manufacturing Technology, Part B: Advanced Packaging, 17, 2, 223–227, May 1994.
Firth, I. M., Holography and Computer Generated Holograms, Mills and Boon, Ltd., London, 1972.
Gabor, D., ‘‘Resolution Beyond the Information Limit in Transmission Electron Microscopy, Nature, 161, 777–778, 1948.
Gallagher, N. C. and D. W. Sweeney, ‘‘Infrared Holographic Optical Elements with Applications to Laser Material Processing,’’ IEEE J. of Quantum Elec., QE-15, 1369–1380, December 1979.
Garner, W., W. Gautschi, ‘‘Adaptive Quadrature-Revisited,’’ BIT, 40, 84–101, 2000.
399
Gaylord, T. K., M. G. Moharam, ‘‘Analysis and Application of Optical Diffraction Gratings,’’ Proc. IEEE, 73, 894–936, 1985.
Gerrard, A. and J. M. Burch, Introduction to Matrix Methods in Optics, J. Wiley, New York, 1975.
Gerchberg, R., ‘‘Superresolution through Error Energy Reduction,’’ Optica Acta, 21, 709–720, 1974.
Goodman, J. W., Introduction to Fourier Optics, 3rd Edition, Roberts and Company, Greenwood Village, Colorado, 2004.
Hadley, G. R., ‘‘Transparent Boundary Condition for the Beam Propagation Method,’’ IEEE J. Quantum Electronics, 26, 1, 109–112, January 1990.
Hadley, G. R., ‘‘Wide-Angle Beam Propagation Using Pade Approximant Operators,’’ Optics Letters, 17, 20, 1426–1431, October 15, 1992.
Hayes, M. H., J. S. Lim, A. V. Oppenheim, ‘‘Signal Reconstruction from the Phase or Magnitude of its Fourier Transform,’’ IEEE Tran. Acoustics, Speech and Signal Proc., ASSP-28, 670–680, 1980.
Hecht, E., Optics, Addison-Wesley, Mass., 2002.
Hu, Sai, O. K. Ersoy, ‘‘Design and Simulation of Novel Arrayed Waveguide Grating by Using the Method of Irregularly Sampled Zero Crossings,’’ TR-ECE 02–05, Purdue University, December 2002.
Ishimaru, A., ‘‘Theory of Unequally Spaced Arrays, ‘‘IRE Tran. Antennas and Propagation, 691–701, November 1962.
Kelly, Kozma and D. L., ‘‘Spatial Filtering for Detection of Signals Submerged in Noise,’’ Applied Optics, Vol. 4, No. 4, pp. 389–392, 1965.
Kim, C.-J., R. R. Shannon, ‘‘Catalog of Zernike Polynomials,’’ in Applied Optics and Optical Engineering, edited by R. Shannon and J. Wyant, Ch. 4, Vol. X, Academic Press, San Diego, 1987.
Kock, W. E., Engineering Applications of Lasers and Holography, Plenum, New York, 1975.
Kozma, A., D. L. Kelly, Spatial filtering for detection of signals submerged in noise,’’ Applied Optics, 4, 387–392, 1965.
Kuhl, P., Okan K. Ersoy, ‘‘Design Of Diffractive Optical Elements: Optimality, Scale And Near-Field Diffraction Considerations,’’ Technical Report TR-ECE-03-09, Purdue University, 2003.
Kunz, The Finite Difference Time Domain Method for Electromagnetics, CRC Press, Boca Raton, Florida, 1993.
Lalanne, P., G. M. Morris, ‘‘Highly Improved Convergence of the Coupled-Wave Method for TM Polarization,’’ J. Opt. Soc. Am., 13, 4, 779–784, April 1996.
Lalanne, P., E. Silberstein, ‘‘Fourier-Modal Methods Applied to Waveguide Computational Problems,’’ Optics Letters, 25, 15, 1092–1094, August 1, 2000.
Lanczos, A., Discourse on Fourier Series, Hafner Publishing Co., New York, 1966.
Lalor, E., ‘‘Inverse Wave Propagator,’’ J. Mathematical Physics, Vol. 9, No. 12, pp. 2001– 2006, December 1968.
Lao, Y. T., ‘‘A Mathematical Theory of Antenna Arrays with Randomly Spaced Elements,’’
IEEE Tran. Antennas and Propagation, 257–268, May 1964.
Laude, J. P., Wavelength Division Multiplexing, Prentice Hall, NY, 1993.
400 |
REFERENCES |
Lee, W. H ‘‘Sampled Fourier Transform Hologram Generated by Computer,’’ Applied Optics, 9, 639–643,1970.
Lee, W. H., ‘‘Circular Carrier Holograms,’’ J. Opt. Soc. Am. 65, 518–523, 1975.
Lee, W.-H., ‘‘Binary Computer-Generated Holograms,’’ Applied Optics, Vol. 18, No. 21, pp. 3661–3669, November 1, 1979.
Leith, E. N., J. Upatnieks, ‘‘Reconstructed Wavefronts and Communication Theory,’’ J. Opt. Soc. Am. 52, 1123–1130, 1962.
Lesem, L.B., P. M. Hirsch, J. A. Jordan, jr., ‘‘The kinoform: a new wavefront reconstruction device,’’ IBM J. Res. Develop. 13, 150–155, March 1969.
Levi, A., H. Stark, ‘‘Image Restoration by the Method of Generalized Projections with Application to Restoration from Magnitude,’’ J. Opt. Soc. Am. A, 1, 9, 932–943, September 1984.
Ljunggren, S., O. Lovhaugen, E. Mehlum, ‘‘Seismic Holography in a Norwegian Fjord,’’
Acoustical Imaging, 8, 299–315, 1980.
Lohmann, A. W., in The Engineering Uses of Holography, E. R. Robertson and J. N. Harvey, Eds., Cambridge U. P., London, 1970.
Lohmann, A. W., D. P. Paris, ‘‘Binary Fraunhofer Holograms Generated by Computer,’’ AppI. Opt. 6, 1739–1748, 1967.
Lu, Ying, Okan Ersoy, Dense Wavelength Division Multiplexing/Demultiplexing By The Method Of Irregularlly Sampled Zero Crossing, Technical Report TR-ECE-03-12, Purdue University, 2003.
Marathay, A., Diffraction, in Handbook of Optics, Volume 1: Fundamentals, Techniques, and Design, 2nd edition, McGraw-Hill, New York, pages 3.1–3.31, 1995.
Marcuse, D., Theory of Dielectric Optical Waveguides, 2nd edition, Academic Press, San Diego, 1991.
Meier, R. W., ‘‘Magnifications and Third Order Aberrations in Holography,’’ J. Opt. Soc. Am. 56, 8, 987–997, 1966.
Mellin, S. D., G. P. Nordin, ‘‘Limits of Scalar Diffraction Theory and an Iterative Angular Spectrum Algorithm for Finite Aperture Diffractive Optical Element Design,’’ Optics Express, Vol. 8, No. 13, pp. 705–722, 18 June, 2001.
Mezouari, S., A. R. Harvey, ‘‘Validity of Fresnel and Fraunhofer Approximations in Scalar Diffraction,’’ J. Optics A: Pure Appl. Optics, Vol. 5, pp. 86–91, 2003.
Moharam, M. G., T. K. Gaylord, ‘‘Diffraction analysis of dielectric surface-relief gratings.’’ J. Opt. Soc. Am., 72, 1385–1392, 1982.
Nikon, Phase Contrast Microscopy web page, http://www.microscopyu.com/articles/phasecontrast/phasemicroscopy.html
Okamoto, K., ‘‘Recent Progress of Integrated Optics Planar Lightwave Circuits,’’ Optical and Quantum Electronics, 31,107–129, 1999.
Peng, S., G. M. Morris, ‘‘Efficient Implementation of Rigorous Coupled-Wave Analysis for Surface Relief Gratings, J. Opt. Soc. Am. 12, 1087–1096, 1995.
Pojanasomboon, P., O. K. Ersoy, ‘‘Iterative Method for the Design of a Nonperiodic GratingAssisted Directional Coupler,’’ Applied Optics, 40, 17, 2821–2827, June 2001.
Pennings, E. C. M., M. K. Smit, and G. D. Khoe, ‘‘Micro-Optic versus waveguide devices – An Overview, invited paper,’’ in Proc. Fifth Micm Opdcs Conf 1995, Hiroshima. Japan. Oct. 18–20. 1995, pp. 248–255.