Файл: Weber H., Herziger G., Poprawe R. (eds.) Laser Fundamentals. Part 1 (Springer 2005)(263s) PEo .pdf
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 28.06.2024
Просмотров: 881
Скачиваний: 0
Ref. p. 40] |
|
|
|
|
|
1.1 Fundamentals of the semiclassical laser theory |
37 |
|
|
|
|
|
|
|
|
Jpeak = |
ω |
|
g0 |
|
2 |
|
|
|
|
|
(peak intensity) , |
(1.1.117) |
|||
2σ0T2 |
|
α |
|||||
Tπ = 2 τ = 2 T2 |
α |
|
(pulse duration) . |
(1.1.118) |
|||
|
|
||||||
g0 |
|
The pulse propagates approximately with c, depletes at each position the upper level, and converts this energy via the broadband losses α into heat. The saturated gain just compensates the losses. The pulse is only stable for α > 0 and g0 > 0.
So far solutions of the steady-state SVE-equation were presented, assuming resonance and a homogeneously broadened two-level system. O -resonance interaction and inhomogeneously broadened systems are much more complicated and are discussed in detail in the literature [74Sar, 69Ics, 72Cou]. Moreover, the stability of the pulses with respect to small perturbations was not yet mentioned. It is controlled by the area theorem [67McC, 74Sar].
1.1.7.3.2 Superradiance
The spontaneous emission was neglected in the coherent interaction. An initial state, R = (0, 0, µ ∆ n), complete inversion, without external field F would be stable according to the interaction equations (1.1.103). But due to spontaneous emission and amplified spontaneous emission, the R-vector will be pushed a bit out of equilibrium and decay into the stable position R = (0, 0, −µ ∆ n). This phenomenon is called superradiance and discussed in detail in Chap. 6.2.
1.1.8 Notations
Symbol |
Unit |
Meaning |
A21 |
s−1 |
Einstein coe cient of spontaneous emission |
B |
Vs/m2 |
magnetic induction |
B12, B21 |
m3/VAs3 |
Einstein coe cient of induced emission |
C |
As/m2 |
component of the Feynman vector R |
c0 |
m/s |
vacuum velocity of a plane wave |
c |
m/s |
phase velocity of light in a medium |
c1,2 |
– |
coe cients of the eigenvector |
D |
As/m2 |
electric displacement |
E |
V/m |
electric field |
E0 |
V/m |
electric-field amplitude |
E1,2 |
VAs |
energy eigenstates of the two-level system |
Ein |
VAs |
amplifier input energy |
Eout |
VAs |
amplifier output energy |
ES |
VAs/m2 |
amplifier saturation energy density |
f (ω, ωA) |
– |
line shape factor |
G |
– |
gain factor |
G0 |
– |
small-signal gain factor |
g |
m−1 |
gain coe cient |
g0 |
m−1 |
small-signal gain coe cient |
g1,2 |
– |
degeneracies of lower/upper laser level |
Landolt-B¨ornstein
New Series VIII/1A1
38 |
1.1.8 Notations |
[Ref. p. 40 |
|
|
|
gh
ginh
H
H0
H0
Hint
h(ω, ωA) j
J
J
J +, J −
Js, Js4
k k k0
n nr n0
n1,2
PA,real
PA
PA0
PH
R
R
R1,2
r S
T1
T2
T2
T2
Tsp
Tπ , T2 π V
v Z Z0
α
χA χe χH χm
δ
∆n
∆tr
∆ωA
∆ωC
m−1 |
gain coe cient of a homogeneously broadened |
||
m−1 |
transition |
||
gain coe cient of an inhomogeneously broadened |
|||
|
transition |
||
A/m |
magnetic field |
||
A/m |
magnetic-field amplitude |
||
VAs |
Hamilton operator of the undisturbed transition |
||
VAs |
Hamilton operator of interaction |
||
s |
line shape factor |
||
A/m2 |
current density |
||
Vs/m2 |
magnetic polarization |
||
VA/m2 |
intensity |
||
VA/m2 |
intensity inside the resonator |
||
VA/m2 |
saturation intensity of 2-, 3- and 4-level system |
||
m−1 |
wave number |
||
m−1 |
wave vector inside the medium |
||
m−1 |
wave vector in vacuum |
||
m |
geometrical length of the active medium |
||
– |
complex refractive index |
||
– |
real refractive index |
||
m−3 |
density of active atoms |
||
m−3 |
density of lower/upper population |
||
As/m2 |
real polarization of the active atoms |
||
As/m2 |
complex polarization of the active atoms |
||
As/m2 |
amplitude of the complex polarization |
||
As/m2 |
complex polarization of the host material |
||
As/m2 |
Feynman vector |
||
– |
= √ |
|
, average mirror reflectivity |
R1 R2 |
|||
– |
reflectivity of mirror 1, 2 |
||
m |
position vector |
||
VA/m2 |
Poynting vector |
||
s |
upper-laser-level life time |
||
s |
dephasing time due to homogeneous broadening |
||
s |
dephasing time due to inhomogeneous broadening |
||
s |
resulting dephasing time |
||
s |
spontaneous decay time |
||
s |
pulse duration of π-, 2 π-pulses |
||
– |
resonator loss factor per transit |
||
m/s |
pulse peak velocity |
||
V/A |
impedance |
||
V/A |
vacuum impedance |
||
m−1 |
absorption coe cient |
||
– |
susceptibility of the active atoms |
||
– |
electric susceptibility |
||
– |
susceptibility of the host material |
||
– |
magnetic susceptibility |
||
s−1 |
detuning |
||
m−3 |
inversion density |
||
m−2 |
transverse delta-operator |
||
s−1 |
line width of homogeneous broadening |
||
s−1 |
line width of collision broadening |
Landolt-B¨ornstein
New Series VIII/1A1
Ref. p. 40] |
1.1 Fundamentals of the semiclassical laser theory |
39 |
|
|
|
∆ωR
∆ωS
∆ωL,inh, ∆ ωL,h
ε
ε0
|ϕ |ϕ1,2
κ
λ0
Λ
µ
µ0
µ12, µ21
µA
θ
ρω σ(ω) σe σ0
τ
ω
ωA
ωR
s−1 s−1 s−1
–
8.8542 × 10−12 As/Vm
–
–
1.38 × 10−23 VAs2/K
m s−1
–
4 π × 10−7 Vs/Am Asm
Asm
–
VAs2/m3 m2
A/Vm m2
s s−1 s−1
s−1
line width of inhomogeneous broadening line width of saturation broadening
lasing bandwidth of inhomogeneous/homogeneous transitions
permittivity electric constant
state vector of the two-level system eigenfunctions of the two-level system Boltzmann’s constant
vacuum wavelength Rabi frequency permeability magnetic constant
= µA, dipole moment of the two-level transition dipole moment of the two-level transition
beam divergence, slope of the Feynman vector spectral energy density (per dω)
cross section of the two-level system electric conductivity
cross section of the two-level system in resonance pulse width
frequency of the radiation field
resonance frequency of the homogeneously broadened transition
resonance frequency of the inhomogeneously broadened transition
Landolt-B¨ornstein
New Series VIII/1A1
40 |
References for 1.1 |
|
|
References for 1.1
17Ein |
Einstein, A.: Phys. Z. 18 (1917) 121. |
19Mei |
Meissner, A.: Patentschrift Reichspatentamt, Deutsches Reich, No. 291604, 1919. |
46Blo |
Bloch, F.: Phys. Rev. 70 (1946) 460. |
47Lam |
Lamb, W.E., Retherford, R.C.: Phys. Rev. 72 (1947) 241. |
54Bas |
Basov, N.G., Prokhorov, A.M.: Zh. Eksp. Teor. Fiz. 28 (1954) 249. |
54Max |
Maxwell, J.C.: Treatise on electricity and magnetism, New York: Dover Publications |
|
Inc., 1954 (reprint of the 3. edition 1891). |
57Fey |
Feynman, R.P., Vernon, F.L., Helwarth, R.W.: J.Appl. Phys. 28 (1957) 49. |
58Sch |
Schawlow, A.L., Townes, C.H.: Phys. Rev. 112 (1958) 1940. |
60Mai |
Maiman, T.H.: Nature (London) 187 (1960) 493. |
60Vuy |
Vuylsteke, A.A.: Elements of maser theory, N.Y.: v. Nostrand Comp., 1960. |
61Mes |
Messiah A.: Quantum mechanics, Vol. I–II, Amsterdam: North Holland Publ. Comp., |
|
1961–1962. |
61Mor |
Morse, P.M.: Thermal physics, New York: W.A. Benjamin Inc, 1961. |
63Fra |
Frantz, L.M., Nodvik, I.S.: J. Appl. Phys. 34 (1963) 2346. |
63Tan |
Tang, C.L., Statz, H., de Mars, G.: Phys. Rev. 34 (1963) 2289. |
64Lam |
Lamb, W.E.: Phys. Rev. A 134 (1964) 1429. |
64Sta |
Statz, H., Tang, C.L.: Appl. Phys. 35 (1964) 1377. |
66Men |
Menne, T.J.: IEEE J. Quantum Electron. 2 (1966) 47. |
66War |
Ward, J.F.: Phys. Rev. 143 (1966) 569. |
67McC |
McCall, S.L., Hahn, E.L.: Phys. Rev. Lett. 18 (1967) 908. |
68Sch |
Schi , L.I.: Quantum mechanics, New York.: McGraw Hill, 1968. |
69Are |
Arecchi, F.T., Masserini, G.L., Schwendimann, P.: Riv. Nuovo Cimento Soc. Ital. Fis. 1 |
|
(1969) 181. |
69Ics |
Icsevgi, A., Lamb, W.E.: Propagation of light pulses in a Laser amplifier; Phys. Rev. |
|
185 (1969) 517. |
69McC |
McCall, L., Hahn, E.L.: Phys. Rev. 183 (1969) 457. |
70Hak |
Haken, H.: Laser theory, Handbuch der Physik, Vol.XXV/2c, Fl¨ugge, S. (ed.), Berlin: |
|
Springer-Verlag, 1970. |
71Lam |
Lamb, G.L.: Rev. Mod. Phys. 43 (1971) 99. |
72Cou |
Courtens, E.: Nonlinear coherent resonant phenomena, in: Laser handbook Vol. 2, |
|
Arecchi, F.T., Schulz-Dubois, E.O. (eds.), Amsterdam, New York, Oxford: North Hol- |
|
land Publ. Comp, 1972, p. 1259. |
Landolt-B¨ornstein
New Series VIII/1A1