Файл: Weber H., Herziger G., Poprawe R. (eds.) Laser Fundamentals. Part 1 (Springer 2005)(263s) PEo .pdf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 28.06.2024

Просмотров: 910

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Ref. p. 187]

4.1 Frequency conversion in crystals

141

 

 

 

4.1Frequency conversion in crystals

G.G. Gurzadyan

4.1.1 Introduction

4.1.1.1 Symbols and abbreviations

4.1.1.1.1 Symbols

 

 

 

η

conversion e ciency

η (energy)

energy conversion e ciency

η (power)

power conversion e ciency

η (quantum)

quantum conversion e ciency

τp, τ

pulse duration

 

α

angle between interacting beams

λ

wavelength bandwidth

ν

frequency bandwidth

θ

angular bandwidth

E

energy

 

 

f

laser pulse repetition rate

I0

pump intensity

Ithr

threshold intensity

ϕpm

phase-matching angle in the XY plane from X axis

L

crystal length

 

λ

wavelength

 

n

refractive index

no

ordinary refractive index

ne

extraordinary refractive index

ν

wave number, frequency

P

power

 

 

θpm

phase-matching angle from Z axis

ρ

birefringence (walk-o ) angle

T , Tpm

crystal temperature

Type I

o + o e

or

e + e o

Type II

o + e e

or

o + e o

ooe

o + o e

or

e o + o

eeo

e + e o

or

o e + e

eoe

e + o e

or

e e + o

oeo

o + e o

or

o e + o

Landolt-B¨ornstein

New Series VIII/1A1


142

4.1.1 Introduction

[Ref. p. 187

 

 

 

4.1.1.1.2 Abbreviations

av cw DFG

DROPO ERR FIHG FOHG ICDFG ICSHG IR

mid IR NC NCSHG OPA OPO SFG SH SHG SIHG

SP OPO SROPO SRS THG TROPO TWOPO UV

4.1.1.1.3 Crystals

Chemical formula

Ag3AsS3

AgGaS2

AgGaSe2

Ag3SbS3

Ba2NaNb5O15 β−BaB2O4 CdGeAs2 CdSe

CsB3O5 CsH2AsO4 CsLiB6O10 C6H6N2O3 C8H8O3

C10H11N3O6 C10H13N3O3

C11H14N2O3

CsD2AsO4 GaSe

average continuous wave

di erence frequency generation doubly resonant OPO

external ring resonator fifth harmonic generation fourth harmonic generation

intracavity di erence frequency generation intracavity second harmonic generation infrared

middle infrared noncollinear

noncollinear second harmonic generation optical parametric amplifier

optical parametric oscillator sum frequency generation second harmonic

second harmonic generation sixth harmonic generation synchronously pumped OPO singly resonant OPO stimulated Raman scattering third harmonic generation triply resonant OPO traveling-wave OPO ultraviolet

Symbol

Crystal name

 

Proustite

 

Silver Thiogallate

 

Silver Gallium Selenide

 

Pyrargyrite

 

Barium Sodium Niobate (Banana)

BBO

Beta-Barium Borate

 

Cadmium Germanium Arsenide

 

Cadmium Selenide

CBO

Cesium Borate

CDA

Cesium Dihydrogen Arsenate

CLBO

Cesium Lithium Borate

POM

3-Methyl-4-Nitro-Pyridine-1-Oxide

MHBA

4-Hydroxy-3-Methoxy-Benzaldehyde (Vanillin)

MAP

Methyl N-(2,4-Dinitrophenyl)-L-Alaninate

DAN

N-[2-(Dimethylamino)-5-Nitrophenyl]-Acetamide

NPP

N-(4-Nitrophenyl)-(L)-Propinol

DCDA

Cesium Dideuterium Arsenate

 

Gallium Selenide

Landolt-B¨ornstein

New Series VIII/1A1



Ref. p. 187]

4.1 Frequency conversion in crystals

143

 

 

 

HgGa2S4

α−HIO3

KB5O8 4D2O

KB5O8 4H2O

KD2AsO4

KD2PO4

KH2PO4

KNbO3

KTiOAsO4

KTiOPO4

LiB3O5

LiCOOH H2O

LiIO3

LiNbO3

LiNbO3:MgO

(NH2)2CO

NH4H2AsO4

NH4H2PO4

NO2C6H4NH2

RbH2AsO4

RbH2PO4

RbTiOAsO4

Te

Tl3AsSe3

ZnGeP2

 

Mercury Thiogallate

 

α−Iodic Acid

DKB5

Potassium Pentaborate Tetradeuterate

KB5

Potassium Pentaborate Tetrahydrate

DKDA

Potassium Dideuterium Arsenate

DKDP

Potassium Dideuterium Phosphate

KDP

Potassium Dihydrogen Phosphate

 

Potassium Niobate

KTA

Potassium Titanyl Arsenate

KTP

Potassium Titanyl Phosphate

LBO

Lithium Triborate

LFM

Lithium Fomate

 

Lithium Iodate

 

Lithium Niobate

 

Mg:O-doped Lithium Niobate

 

Urea

ADA

Ammonium Dihydrogen Arsenate

ADP

Ammonium Dihydrogen Phosphate

mNA

meta-Nitroaniline

RDA

Rubidium Dihydrogen Arsenate

RDP

Rubidium Dihydrogen Phosphate

RTA

Rubidium Titanyl Arsenate

 

Tellurium

 

Thallium Arsenic Selenide

 

Zinc Germanium Phosphide

4.1.1.2 Historical layout

The pioneering work of Franken et al. [61Fra] on second harmonic generation of ruby laser radiation in quartz and invention of the phase-matching concept [62Gio, 62Mak] generated a new direction in the freshly born field of nonlinear optics: frequency conversion in crystals. Sum frequency generation by mixing the outputs of two ruby lasers in quartz was already realized in 1962 [62Mil, 62Bas]. Zernike and Berman [65Zer] were the first to demonstrate di erence frequency mixing. Optical parametric oscillation was experimentally realized in 1965 by Giordmaine and Miller [65Gio]. First monographs on nonlinear optics by Akhmanov and Khokhlov [64Akh] and Bloembergen [65Blo] greatly stimulated development of the nonlinear frequency converters. At present the conversion of laser radiation in nonlinear crystals is a powerful method for generating widely tunable radiation in the ultraviolet, visible, near, mid, and far IR regions.

For theoretical and experimental details of nonlinear frequency conversions in crystals, see monographs by Zernike and Midwinter [73Zer], Danelyus, Piskarskas et al. [83Dan], Dmitriev and Tarasov [87Dmi], Shen [84She], Handbook of nonlinear optical crystals (by Dmitriev, Gurzadyan, Nikogosyan) [91Dmi, 99Dmi], Handbook of nonlinear optics (by Sutherland ) [96Sut]. For frequency conversion of femtosecond laser pulses, see also [88Akh]. For linear and nonlinear optical properties of the crystals, see [77Nik, 79Kur, 84Jer, 87Nik, 87Che, 96Sut, 99Dmi, 00Cha, 00Sas]. For related nonlinear phenomena, see [96Sut]. For the historical perspective of the nonlinear frequency conversion over the first forty years, see [00Bye]. In the following section, Sect. 4.1.2, we present some basic equations which may be useful for simple calculations of frequency converters.

Landolt-B¨ornstein

New Series VIII/1A1