Файл: Weber H., Herziger G., Poprawe R. (eds.) Laser Fundamentals. Part 1 (Springer 2005)(263s) PEo .pdf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 28.06.2024

Просмотров: 890

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

B¨ornstein-Landolt

VIII/1A1 Series New

Table 4.1.32. Femtosecond OPO in the UV, visible, and near IR regions.

Crystal

θpm, type of

λpump

Ithr

λOPO

τp

η

Ref.

Notes

 

interaction

[µm]

[MW cm2]

[µm]

[fs]

[%]

 

 

BBO

θeoe = 28

0.78

1.1–2.6

60

35

[94Nis]

TWOPO, L1 = L2 = 4.8 mm, E = 0.15 mJ

 

θooe = 20

0.8

1.2–1.3

70

5

[94Sei1]

TWOPO, L = 4 mm

 

ooe

0.62

0.45–2.8

200

15

[91Joo]

TWOPO, L1 = 5 mm, L2 = 7 mm, E = 20 µJ

 

ooe, eoe

0.6

0.75–3.1

180–250

23

[93Dan]

TWOPO-OPA, L1 = L2 = 8 mm,

 

 

 

 

 

 

 

 

I0 = 70 GW cm2

 

θooe = 19.5–21

0.53

2200

0.68–2.4

75

30

[88Bro]

SP SROPO, L = 7.2 mm, I0 = 2.2 GW cm2,

 

 

 

 

 

 

 

 

E = 2 mJ

 

ooe

0.527

0.7–1.8

65–260

3

[90Lae2,

SP SROPO, L = 5.8 mm

 

 

 

 

 

 

 

91Lae,

 

 

 

 

 

 

 

 

93Lae]

OPA with gain ratio 2 × 104

 

ooe

0.527

1.04–1.07

70

[92Dub]

 

θooe = 32

0.4

0.566–0.676

30

10

[94Dri]

SP OPO, P = 100 mW

 

ooe

0.4

0.59–0.666

13

50

[95Gal2]

SP OPO, P = 130 mW

 

ooe

0.395

0.55–0.69

14

[98Shi]

NC OPA, seeding with white light continuum

 

θooe = 32

0.39

0.5–0.7

11

[97Cer]

OPA, seeding with white light continuum,

 

 

 

 

 

 

 

 

L = 1 mm

LBO

0.8

1.1–2.4

40

38

[95Kaf]

SP OPO, L = 6 mm, P = 550 mW

 

0.77–0.8

320

1.374–1.530;

720

7.5

[95Ebr2]

SP OPO, P = 90 mW

 

 

 

 

1.676–1.828

 

 

 

 

 

θ = 90 , ϕ = 0

0.605

0.85–0.97;

200

10–15

[93Dan,

TWOPO, L1 = L2 = L3 = 15 mm,

 

 

 

 

1.6–2.1

 

 

93Ban]

T = 30–85 C, I0 = 25 GW cm2

KTP

θ = 43 , ϕ = 0 ,

0.83

325 mW

1.05–1.16;

175

15 a

[95McC]

SP OPO, L = 2 mm

 

eoo

 

 

2.9–4.0

 

55 a

 

 

 

θ = 90 , ϕ = 0 ,

0.816

2.5–2.9

160

[95Hol]

SP OPO-OPA, L1 = L2 = 0.9 mm, E = 0.55 µJ

 

eoo

 

 

 

 

55 a

 

 

 

ϕ = 0

0.765–0.815

1.22–1.37;

57–135

[92Pel]

L = 1.15 mm, f = 90 MHz, P = 340 mW (135 fs)

 

 

 

 

1.82–2.15

 

 

 

and 115 mW (57 fs)

(continued)

184

oscillation parametric Optical 7.1.4

187 .p .[Ref


B¨ornstein-Landolt

VIII/1A1 Series New

Table 4.1.32 continued.

Crystal

θpm, type of

λpump

Ithr

λOPO

τp

η

Ref.

Notes

 

interaction

[µm]

[MW cm2]

[µm]

[fs]

[%]

 

 

KTP

θ = 67 , ϕ = 0

0.765

40000;

1.2–1.34;

62

[92Fu]

SP OPO, L = 1.5 mm, f = 76 MHz, P = 175 mW

 

 

 

(180 mW)

1.78–2.1

 

 

 

 

 

0.745

100 mW

0.53–0.585

200

29

[97Kar]

SP OPO with ICSHG (self-doubling OPO)

 

θ = 45 , ϕ = 0

0.68

1.16–2.2;

57

60 a

[93Pow1] L = 1.5 mm, P = 0.68 W, ICSHG in BBO

 

 

 

 

0.58–0.657

 

 

 

(L = 47 µm)

 

ϕ = 0

0.645

110 mW

1.2–1.34

220

13

[92Mak]

SP OPO, P = 30 mW

 

θ = 53 , ϕ = 0

0.61

0.755–1.04;

105–120

[90Wac,

SP OPO in CPM dye laser cavity, L = 1.4 mm

 

 

 

 

1.5–3.2

 

 

91Wac]

 

 

θ = 62 , ϕ = 0 ,

0.524

2000

1.2–1.6

260

10

[95Rau]

SP OPO, L = 3 mm

 

eoo

 

 

 

 

 

 

 

 

θ = 62 , ϕ = 0

0.5235

1.2–1.7

300

[98Lae]

SP OPO, L = 6 mm, E = 10 nJ

KTA

ϕ = 0 , oeo

0.78

1.29–1.44;

85–150

10–15

[93Pow2] L = 1.47 mm, P = 75 mW

 

 

 

 

1.83–1.91

 

 

 

 

RTA

θ = 53 , ϕ = 0 ,

0.76–0.82

1.03–1.3;

58

25

[94Pow]

SP SROPO, L = 1.8 mm, P = 250 mW

 

eoo

 

 

2.15–3.65

 

 

 

 

 

θ = 90 , ϕ = 0 ,

0.78–0.86

50 mW

1.33

70

32

[95Rei]

L = 2 mm, P = 185 mW

 

eoo

 

 

 

 

 

 

 

 

Ti:Sa

1.25; 2.25

78

33

[97Rei]

SP OPO, f = 344 MHz, P = 0.6 W

KNbO3

θ = 38 , ϕ = 90

0.78

2.3–5.2

60–90

23

[95Spe,

L = 1 mm, P = 170–300 mW

 

 

 

 

 

 

 

96Spe]

 

NPP

0.62

0.8–1.6

150–290

[86Led,

L = 1.5 mm

 

 

 

 

 

 

 

87Led]

 

 

 

 

 

 

 

 

 

 

a Pump depletion.

187] .p .Ref

crystals in conversion Frequency 1.4

185



186

4.1.8 Picosecond continuum generation

[Ref. p. 187

 

 

 

Table 4.1.33. Optical parametric oscillation in the mid IR region.

Crystal

λpump

λOPO

τp

Conversion

Ref.

 

[µm]

[µm]

 

e ciency [%]

 

 

 

 

 

 

 

Ag3AsS3

1.065

1.82–2.56

26 ns

1

[72Han]

 

1.064

1.2–8

8 ps

0.01–1

[83Els]

AgGaS2

1.064

1.2–10

8 ps

0.1–10

[84Els]

 

1.06

1.4–4.0

18 ns

16

[84Fan]

 

1.064

4.5–8.7

15–20 ps

5.4

[91Bak]

 

1.064

1.16–12.9

19 ps

25

[93Kra]

 

1.064

1.319; 5.505

45–80 ps

63 a

[94Che]

 

1.047

2.6–7

0.5–2.6 ps

[98Lae]

 

0.845

1.267; 2.535

cw

2

[98Dou]

 

0.74–0.85

3.3–10

160 fs

20

[94Sei2]

AgGaSe2

2.05

2.65–9.02

30 ns

> 18

[86Eck]

 

2.06

4.1

30 ns

23

[93Bud]

 

1.57

6–14

6 ns

20

[97Cha]

 

1.34

1.6–1.7; 6.7–6.9

30 ns

> 18

[86Eck]

ZnGeP2

2.94

5.51–5.38;

80 ps

5.3

[85Vod]

 

 

6.29–6.46

 

 

 

 

2.94

5–5.3; 5.9–6.3

150 ps

17

[87Vod]

 

2.79

5.3; 5.9

100 ps

10

[93Vod2]

 

2.8; 2.94

4–10

100 ps

1–18

[91Vod, 93Vod1, 95Vod2]

GaSe

2.8; 2.94

3.5–18

100 ps

1

[91Vod, 93Vod1, 95Vod1]

CdSe

1.833

9.8–10.4; 2.26–2.23

300 ns

40

[72Her]

 

2.36

7.9–13.7

40 ns

15

[72Dav, 73Dav]

 

2.87

4.3–4.5; 8.1–8.3

140 ns

15

[74Wei]

 

2.87

14.1–16.4

[76Wen]

 

 

 

 

 

 

a Pump depletion.

4.1.8 Picosecond continuum generation

Table 4.1.34. Picosecond continuum generation in crystals.

Crystal

λpump

Ipump

λcont

η

Cut angle

Ref.

 

[µm]

[109 W cm2]

[µm]

[% ]

of crystals

 

KDP

1.054

50

0.3–1.1

10

θ = 49

[83Mur]

KDP

0.527

30–40

0.84–1.4

15

θ = 42

[82Bar]

LiIO3

0.355

0.46–1.55

θ = 90

[85Pok]

LiIO3

0.532

0.3

0.67–2.58

θ = 90

[85Pok]

LiIO3

1.064

1.72–3.0

θ = 90

[85Pok]

LiNbO3

1.064

1.92–2.38

3

θ = 44.7

[75Cam]

GaAs

9.3

100

3–14

[85Cor]

 

 

 

 

 

 

 

Landolt-B¨ornstein

New Series VIII/1A1


References for 4.1

187

 

 

References for 4.1

61Fra

Franken, P.A., Hill, A.E., Peters, C.W., Weinreich, G.: Phys. Rev. Lett. 7 (1961) 118.

62Bas

Bass, M., Franken, P.A., Hill, A.E., Peters, C.W., Weinreich, G.: Phys. Rev. Lett. 8

 

(1962) 18.

62Gio

Giordmaine, J.A.: Phys. Rev. Lett. 8 (1962) 19.

62Kle

Kleinman, D.A.: Phys. Rev. 126 (1962) 1977.

62Mak

Maker, P.D., Terhune, R.W., Niseno , M., Savage, C.M.: Phys. Rev. Lett. 8 (1962) 21.

62Mil

Miller, R.C., Savage, A.: Phys. Rev. 128 (1962) 2175.

64Akh

Akhmanov, S.A., Khokhlov, R.V.: Problems of nonlinear optics, Moscow: VINITI, 1964;

 

English Transl.: Akhmanov, S.A., Khokhlov, R.V.: Problems of nonlinear optics, New

 

York: Gordon and Breach, 1971.

64Mil

Miller, R.C.: Appl. Phys. Lett. 5 (1964) 17–19.

65Blo

Bloembergen, N.: Nonlinear optics, New York: Benjamin, 1965.

65Gio

Giordmaine, J.A., Miller, R.C.: Phys. Rev. Lett. 14 (1965) 973.

65Zer

Zernike jr., F., Berman, P.R.: Phys. Rev. Lett. 15 (1965) 999.

67Lab

Labuda, E.F., Johnson, A.M.: IEEE J. Quantum Electron. 3 (1967) 164.

67Mid

Midwinter, J.E., Warner, J.: J. Appl. Phys. 38 (1967) 519.

67Mil

Miller, R.C., Nordland, W.A.: IEEE J. Quantum Electron. 3 (1967) 642.

68Geu

Geusic, J.E., Levinstein, H.J., Singh, S., Smith, R.G., Van Uitert, L.G.: Appl. Phys.

 

Lett. 12 (1968) 306.

68Mid

Midwinter, J.E.: Appl. Phys. Lett. 12 (1968) 68.

68Smi

Smith, R.G., Geusic, J.E., Levinstein, H.J., Singh, S.L., Van Uitert, G.: J. Appl. Phys.

 

39 (1968) 4030.

69Akm

Akmanov, A.G., Akhmanov, S.A., Zhdanov, B.V., Kovrigin, A.I., Podsotskaya, N.K.,

 

Khokhlov, R.V.: Pisma Zh. Eksp. Teor. Fiz. 10 (1969) 244; JETP Lett. (English Transl.)

 

10 (1969) 154.

69Amm

Amman, E.O., Oshman, M.K., Foster, J.D., Yarborough, J.M.: Appl. Phys. Lett. 15

 

(1969) 131.

69Des

Deserno, V., Nath, G.: Phys. Lett. A 30 (1969) 483.

69Far

Faries, D.W., Gehring, K.A., Richards, P.L., Shen, Y.R.: Phys. Rev. 180 (1969) 363.

69Yaj

Yajima, T., Inoue, K.: Phys. Lett. A 26 (1968) 281; IEEE J. Quantum Electron. 5

 

(1969) 140.

70Che

Chesler, R.B., Karr, M.A., Geusic, J.E.: Proc. IEEE 58 (1970) 1899.

70Izr

Izrailenko, A.I., Kovrigin, A.I., Nikles, P.V.: Pisma Zh. Exp. Teor. Fiz. 12 (1970) 475;

 

JETP Lett. (English Transl.) 12 (1970) 331.

70Nat

Nath, G., Nehmanesch, H., Gs¨anger, M.: Appl. Phys. Lett. 17 (1970) 286.

70Wal

Wallace, R.W.: Appl. Phys. Lett. 17 (1970) 497.

71Boy

Boyd, G.D., Gandrud, W.B., Buechler, E.: Appl. Phys. Lett. 18 (1971) 446.

71Cam

Campillo, A.J., Tang, C.L.: Appl. Phys. Lett. 19 (1971) 36.

71Dew

Dewey, C.F., Hocker, L.O.: Appl. Phys. Lett. 18 (1971) 58.

71Her

Herbst, R.L., Byer, R.L.: Appl. Phys. Lett. 19 (1971) 527.

71Oka

Okada, M., Ieiri, S.: Jpn. J. Appl. Phys. 10 (1971) 808.

Landolt-B¨ornstein

New Series VIII/1A1