Файл: Ufimtsev P. Fundamentals of the physical theory of diffraction (Wiley 2007)(348s) PEo .pdf
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 28.06.2024
Просмотров: 977
Скачиваний: 0
190Chapter 7 Elementary Acoustic and Electromagnetic Edge Waves
•EEWs in the directions of the diffraction cone (Fig. 4.4). These directions are determined by ϑ = π − γ0. According to Equations (7.37), (7.74), (7.75), and (7.95),
cos σ1 = − cos ϕ |
and |
cos σ2 = − cos(α − ϕ). |
(7.112) |
|||||||||
The quantities σ1,2 belong to the interval 0 ≤ σ1,2 ≤ π . Therefore, |
|
|||||||||||
|
|
|
|
|
π |
ϕ, |
for 0 |
≤ |
ϕ |
≤ |
π |
(7.113) |
|
|
|
|
σ1 = ϕ − |
π , |
for π |
ϕ |
2π |
||||
|
|
|
|
|
− |
|
|
≤ |
|
≤ |
|
|
and |
= |
|
|
− |
− |
|
≤ |
− |
≤ |
|
||
2 |
π |
|
|
|||||||||
|
|
|
|
− (α − ϕ), |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
σ |
|
π |
|
for 0 α |
ϕ |
π |
(7.114) |
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
− ϕ − π , |
|
for π ≤ α − ϕ ≤ 2π . |
|
|||||
|
|
α |
|
|
The first row in Equation (7.114) relates to the region inside the wedge (α ≤ ϕ ≤ 2π ). Utilizing these relationships one can show that the directivity patterns Fs,h(1) transform into
Fs(1)(π − γ0, ϕ) = f (1)(ϕ, ϕ0, α) |
and |
Fh(1)(π − γ0, ϕ) = g(1)(ϕ, ϕ0, α) |
|
outside the wedge (0 ≤ ϕ ≤ α), and into |
|
(7.115) |
|
|
|
||
Fs(1)(π − γ0, ϕ) = −f (0)(ϕ, ϕ0, α) |
and |
||
Fh(1)(π − γ0, ϕ) = −g(0)(ϕ, ϕ0, α) |
(7.116) |
inside the wedge (α < ϕ < 2π ).
The last equation indicates that the total field of EEWs inside the wedge
equals zero: |
|
|
|
Fs,h(1)(π − γ0, ϕ) + Fs,h(0)(π − γ0, ϕ) = 0. |
(7.117) |
||
Here, functions |
|
|
|
Fs(0)(π − γ0, ϕ) = f (0)(ϕ, ϕ0, α) |
and |
Fh(0)(π − γ0, ϕ) = g(0)(ϕ, ϕ0, α) |
relate to EEWs radiated by the uniform scattering sources js,h(0). This is the result of the screening of the region α < ϕ < 2π by the perfectly reflecting facets of the wedge.
The functions f (1), g(1) are defined in Equations (4.14) and (4.15). According to Equations (3.56) and (3.57) the functions f (0), g(0) are determined by
f (0)(ϕ, ϕ |
, α) |
|
ε(ϕ0) sin ϕ0 |
|
ε(α − ϕ0) sin(α − ϕ0) |
(7.118) |
|
= cos ϕ + cos ϕ0 |
+ cos(α − ϕ) + cos(α − ϕ0) |
||||||
0 |
|
|
TEAM LinG
|
|
|
|
|
|
|
|
|
|
|
|
7.7 Numerical Calculations of Elementary Edge Waves 191 |
||||||||||||||||||||||||||||||||
and |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
g(0)(ϕ, ϕ |
|
, α) |
|
|
|
|
|
ε(ϕ0) sin ϕ |
|
|
|
|
|
ε(α − ϕ0) sin(α − ϕ) |
, (7.119) |
||||||||||||||||||||||||||||
|
0 |
= − cos ϕ + cos ϕ0 |
− cos(α − ϕ) + cos(α − ϕ0) |
|||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||||||||||
with ε(x) defined in Equation (7.48). |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||
|
|
The functions f , g and f (0), g(0) are singular at the boundaries of the incident |
||||||||||||||||||||||||||||||||||||||||||
and reflected geometric optics rays, that is, in the directions ϕ = π ± ϕ0, |
||||||||||||||||||||||||||||||||||||||||||||
ϕ |
= |
2α |
− |
π |
− |
ϕ |
0 |
. As shown in Section 4.1, these singularities completely |
||||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(1) |
= f − f |
(0) |
, g |
(1) |
|
= g |
− g |
(0) |
are always |
|||||||||||||||||||
cancel each other and functions f |
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||||||
finite. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
Notice also that the EEWs in the directions ϑ |
= |
|
π |
− |
γ |
0 |
generated by the |
|||||||||||||||||||||||||||||||||||
total scattering sources j |
(t) |
(0) |
|
|
|
|
(1) |
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
(t) |
s,h |
= js,h + js,h |
satisfy the reciprocity principle. Their |
||||||||||||||||||||||||||||||
directivity patterns Fs,h do not change after the permutations ϑ ↔ γ0, ϕ ↔ ϕ0. |
||||||||||||||||||||||||||||||||||||||||||||
The situation with this principle in the general case is discussed in Chapter 8. |
||||||||||||||||||||||||||||||||||||||||||||
In conclusion, we present the acoustic EEWs for the directions belonging to the |
||||||||||||||||||||||||||||||||||||||||||||
diffraction cone (ϑ = π − γ0): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||
|
|
|
|
|
|
dus(0) |
|
|
|
|
|
|
|
|
|
|
f (0)(ϕ, ϕ |
|
|
, α) |
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||
|
|
|
|
|
|
du(1) |
|
|
uinc(ζ ) |
dζ |
|
f (1)(ϕ, ϕ0 |
, α) |
|
eikR |
, |
|
|
|
|
(7.120) |
|||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
s |
|
|
= |
|
|
|
2π |
|
|
0 |
|
|
|
|
R |
|
|
|
|
|
||||||||||||||||
|
|
|
|
|
|
|
|
(t) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||
|
|
|
|
|
|
dus |
|
|
|
|
|
|
|
|
|
|
f (ϕ, ϕ , α) |
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
and |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
|
du(0) |
|
|
|
|
|
|
|
|
|
|
g(0)(ϕ, ϕ |
0 |
, α) |
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||
|
|
|
|
|
|
|
|
h |
|
|
|
|
|
dζ |
|
|
|
|
|
|
|
|
|
|
eikR |
|
|
|
|
|
|
|||||||||||||
|
|
|
|
|
|
du(1) |
|
|
uinc(ζ ) |
|
g(1)(ϕ, ϕ |
0 |
, α) |
|
|
|
. |
|
|
|
|
(7.121) |
||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
h |
|
|
= |
|
|
2π |
|
|
|
|
|
|
|
R |
|
|
|
|
|
|||||||||||||||||
|
|
|
|
|
|
|
|
(t) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||
|
|
|
|
|
|
duh |
|
|
|
|
|
|
|
|
|
|
g(ϕ, ϕ , α) |
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7.7 NUMERICAL CALCULATIONS OF ELEMENTARY EDGE WAVES
In this section we present the results of numerical calculations of the elementary edge-diffracted waves radiated by the nonuniform scattering sources js,h(1). The analytical expressions for the directivity patterns of these waves are given in the previous
sections. The quantities 10 log Fs,h(1) |
are calculated for the parameters α = 315◦, |
|||
γ0 = 45◦, and ϕ0 = 45◦. Figure |
7.6 |
shows the directivity |
patterns in the |
plane |
perpendicular to the edge (ϑ = 90◦, 0 |
◦ ≤ ϕ ≤ 360◦). |
|
|
|
Figure 7.7 demonstrates the |
directivity patterns in the |
bisecting plane |
con- |
taining the edge. In this figure, the polar angle θ is defined through the spherical coordinate ϑ as
ϑ , |
|
ϑ , |
for ϕ |
= |
α/2 |
|
180◦. |
θ = 2π |
− |
for ϕ |
α/2 |
+ |
|||
|
|
|
= |
|
|
TEAM LinG
7.7 Numerical Calculations of Elementary Edge Waves 193
Figure 7.7 Directivity patterns of elementary edge waves (radiated by the nonuniform/fringe sources) in the bisecting plane. The interval 180◦ ≤ θ ≤ 360◦ relates to the region inside the wedge.
and their linear combinations in the functions U(σ1, ϕ0) and V (σ1, ϕ0) are finite. To treat these singularities, one should apply expressions (7.104) and (7.105), keeping in mind that now γ0 = 45◦ and 2 sin2 γ0 = 1. Together with Equations (7.85) and (7.87), they lead to the following Taylor approximations:
|
U(σ |
, ϕ |
) |
≈ |
π |
cot |
|
π(σ1 + ϕ0) |
|
− |
cot |
|
σ1 + ϕ0 |
+ |
A |
|
− |
B |
(7.122) |
||||||||||||||||||||||||
|
|
|
|
|
2 |
|
|
||||||||||||||||||||||||||||||||||||
|
|
|
1 |
0 |
|
α |
|
|
|
|
2α |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||
and |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
V (σ |
, ϕ |
) |
|
|
|
π |
|
|
|
cot |
π(σ1 + ϕ0) |
|
|
|
|
|
|
1 |
|
|
cot |
σ1 + ϕ0 |
|
|
1 |
(A |
|
B), |
|||||||||||||||
≈ |
α sin σ1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
− sin σ1 |
− |
|||||||||||||||||||||||||
1 |
0 |
|
|
|
|
|
|
|
|
2α |
|
− sin σ1 |
2 |
|
|
|
|
||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(7.123) |
||
where |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
A |
= |
|
π |
|
|
π(σ1 − ϕ0) |
|
+ |
1 |
|
π 3(σ1 − ϕ0)3 |
|
|
|
(7.124) |
|||||||||||||||||||||
|
|
|
|
|
|
|
|
α |
|
45 |
|
|
|
|
|||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
6α |
|
|
|
|
|
|
8α3 |
|
|
|
|
|
|
|
|
|||||||||||||||||
and |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
B |
= |
σ1 − ϕ0 |
+ |
|
1 |
|
|
(σ1 − ϕ0)3 |
. |
|
|
|
|
|
(7.125) |
||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
6 |
45 |
|
|
|
|
|
|
||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
|
|
|
|
|
|
|
|
|
|
TEAM LinG