Файл: Ufimtsev P. Fundamentals of the physical theory of diffraction (Wiley 2007)(348s) PEo .pdf
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 28.06.2024
Просмотров: 979
Скачиваний: 0
186 Chapter 7 |
Elementary Acoustic and Electromagnetic Edge Waves |
|
|||||||||||||||||||||
where kR |
1 and |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
|
|
|
|
|
|
Fs,1(1) = −U(σ1, ϕ0) sin2 γ0, |
|
|
|
|
|
|
|
(7.81) |
|||||||||
|
|
|
|
|
|
Fh(1,1) = −V (σ1, ϕ0) sin γ0 sin ϑ sin ϕ, |
|
|
(7.82) |
||||||||||||||
with |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
U(σ1 |
, ϕ0) = Ut (σ1, ϕ0) − U0(β1, ϕ0), |
|
|
|
|
|
|
|
|
|
|
(7.83) |
|||||||||||
V (σ1 |
, ϕ0) = Vt (σ1, ϕ0) − V0(β1, ϕ0), |
|
|
|
|
|
|
|
|
|
|
(7.84) |
|||||||||||
U |
(σ |
, ϕ |
) |
|
|
π |
|
cot |
π(σ1 + ϕ0) |
|
cot |
π(σ1 − ϕ0) |
, |
(7.85) |
|||||||||
= 2α sin2 γ0 |
|
|
− |
|
|
|
|||||||||||||||||
t |
1 |
0 |
|
|
|
|
2α |
|
|
|
|
|
2α |
|
|
||||||||
U0(β1 |
, ϕ0) = − |
|
|
ε(ϕ0) sin ϕ0 |
|
|
|
|
|
, |
|
|
|
|
(7.86) |
||||||||
cos β1 − cos2 γ0 + sin2 γ0 cos ϕ0 |
|
|
|
|
|||||||||||||||||||
V |
(σ |
, ϕ |
) |
|
|
π |
|
|
|
cot |
π(σ1 + ϕ0) |
+ |
cot |
π(σ1 − ϕ0) |
, (7.87) |
||||||||
= 2α sin2 γ0 sin σ1 |
|
|
|
||||||||||||||||||||
t |
1 |
0 |
|
|
|
2α |
|
|
2α |
|
|||||||||||||
and |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
V0(β1, ϕ0) = |
|
|
|
|
ε(ϕ0) |
|
|
|
|
|
|
. |
(7.88) |
||||||
|
|
|
|
cos β1 − cos2 γ0 + sin2 γ0 cos ϕ0 |
Here, the quantities Ut , Vt relate to the field generated by the total scattering sources js,htot = js,h(1) + js,h(0), and U0, V0 represent the field radiated by their uniform components js,h(0). The quantity ε(ϕ0) is determined using Equation (7.48).
Asymptotic expressions (7.79) and (7.80) describe the field generated by the scattering sources js,h(1) induced on strip 1 located at the wedge face ϕ = 0. Utilizing Equations (7.79) and (7.80) and the relationships (7.31), one can easily obtain asymptotics for the field du2(1), dv2(1) generated by elementary strip 2 belonging to the wedge face ϕ = α. The total field of the EEW created by both strips equals
|
|
dζ |
eikR |
|
|
|
dus(1) |
= uinc(ζ ) |
|
Fs(1)(ϑ , ϕ) |
|
, |
(7.89) |
2π |
R |
|||||
|
|
dζ |
eikR |
|
|
|
duh(1) |
= uinc(ζ ) |
|
Fh(1)(ϑ , ϕ) |
|
, |
(7.90) |
2π |
R |
|||||
where kR 1 and |
|
|
|
|
|
|
Fs(1)(ϑ , ϕ) = −[U(σ1, ϕ0) + U(σ2, α − ϕ0)] sin2 γ0, |
|
(7.91) |
||||
Fh(1)(ϑ , ϕ) = −[V (σ1, ϕ0) sin ϕ + V (σ2, α − ϕ0) sin(α − ϕ)] sin γ0 sin ϑ |
(7.92) |
|||||
with |
|
|
|
|
|
|
U(σ2, α − ϕ0) = Ut (σ2, α − ϕ0) − U0(β2, α − ϕ0) |
(7.93) |
TEAM LinG
188 Chapter 7 Elementary Acoustic and Electromagnetic Edge Waves
according to Equations (7.85) and (7.86), Ut (σ1, 0) = 0 and U0(β1, 0) = 0. The function Ut (σ2, α) is also equal to zero because
cot |
π(σ2 + α) |
= |
cot |
π(2α + σ2 − α) |
|
|
2α |
2α |
|
||||
|
|
|
||||
|
|
= |
|
2α |
|
|
|
|
|
cot |
π(σ2 − α) |
. |
(7.100) |
|
|
|
|
This property is the result of the fact that the incident plane wave cannot propagate along the wedge face. Due to the boundary condition, it is completely cancelled by the reflected plane wave. Therefore, the field uinc(ζ ) incident on the edge equals zero – no incident field, no diffracted field.
• It is obvious that functions Ut (σ1, ϕ0), Vt (σ1, ϕ0) and Ut (σ2, α − ϕ0), Vt (σ2, α − ϕ0) are singular at the points σ1 = ϕ0 and σ2 = α − ϕ0, respectively. At these points, functions U0(β1, ϕ0), V0(β1, ϕ0) and U0(β2, α − ϕ0), V0(β2, α − ϕ0) are also singular, because in this case β1 = β10 for σ1 = ϕ0 and β2 = β20 for σ2 = α − ϕ0, where
cos β10 = cos2 γ0 − sin2 γ0 cos ϕ0 |
(7.101) |
and |
|
cos β20 = cos2 γ0 − sin2 γ0 cos(α − ϕ0). |
(7.102) |
One can show that the singular terms of functions Ut , Vt are cancelled by the singular terms of functions U0, V0, and as a result the functions U = Ut − U0, V = Vt − V0 remain finite. We demonstrate this property for the functions U(σ1, ϕ0) = Ut (σ1, ϕ0) − U0(β1, ϕ0) and V (σ1, ϕ0) = Vt (σ1, ϕ0) − V0(β1, ϕ0).
According to Equations (7.37) and (7.74),
cos σ |
1 |
= |
|
cos2 γ0 − cos β1 |
and |
cos β |
1 |
= |
cos2 γ |
0 |
− |
sin2 γ |
0 |
cos σ |
1 |
. |
|
sin2 γ0 |
|||||||||||||||||
|
|
|
|
|
|
|
|
(7.103)
Utilizing the last equality, one can represent the functions U0(β1, ϕ0) and V0(β1, ϕ0) in the form
|
U |
(β |
, ϕ |
) |
= |
|
|
1 |
|
|
|
cot |
σ1 + ϕ0 |
|
− |
cot |
σ1 − ϕ0 |
|
|
(7.104) |
||||||||||||||||||
|
2 sin2 γ0 |
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||||
and |
0 |
1 |
|
0 |
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
2 |
|
|
|||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
V |
(β |
, ϕ |
) |
= |
|
|
|
1 |
|
|
|
|
|
|
cot |
σ1 + ϕ0 |
|
+ |
cot |
σ1 − ϕ0 |
. |
(7.105) |
||||||||||||||||
2 sin2 γ0 sin σ1 |
|
|
|
|
|
|||||||||||||||||||||||||||||||||
0 |
1 |
0 |
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
2 |
|
|
|
||||||||||||||||
Now it is easy to prove that |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||
|
U(ϕ |
|
|
|
|
|
lim |
U |
(σ |
, ϕ |
) |
− |
U |
|
(β |
, ϕ ) |
] |
|
|
|
|
|
||||||||||||||||
|
|
0, ϕ0) = |
σ1 |
→ |
ϕ0[ |
|
t |
|
|
|
1 |
0 |
|
|
0 |
|
|
1 |
|
0 |
|
|
|
|
|
|||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
= |
|
|
|
π |
|
|
|
|
|
cot |
π ϕ0 |
− |
|
|
|
|
1 |
|
|
|
|
cot ϕ0 |
|
(7.106) |
||||||||
|
|
|
|
|
|
|
2α sin2 γ0 |
|
|
|
α |
|
|
|
2 sin2 γ0 |
|
|
TEAM LinG