Файл: Ufimtsev P. Fundamentals of the physical theory of diffraction (Wiley 2007)(348s) PEo .pdf
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 28.06.2024
Просмотров: 980
Скачиваний: 0
7.4 Transformation of Triple Integrals |
181 |
When all poles of the integrand of Ju are inside the region closed by the contour C = D + F+ + F−, the Cauchy theorem states that
4
Ju(C) = 2π i |
Resm. |
(7.46) |
|
m=1 |
|
Here, the quantities Res1 and Res2 are the residues at the poles η1 = ϕ0 and η2 = −ϕ0:
|
Res1 |
= Res2 = |
α |
· |
ε(ϕ0) sin ϕ0 |
|
|
|
|||||||||||||||
|
|
|
|
|
|
, |
with |
|
(7.47) |
||||||||||||||
|
iπ |
p2 |
+ |
k2 cos ϕ0 |
|
||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1, |
if |
|
0 ≤ x ≤ π |
|
|
|
|
|
|
|||||||||
|
|
ε(x) = 0, |
if |
|
π < x, |
|
|
|
|
|
|
|
(7.48) |
||||||||||
and |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
[w−1(σ |
− ϕ0) − w−1(σ + ϕ0)], |
|
|
||||||||||||||
|
Res3 |
= |
|
|
(7.49) |
||||||||||||||||||
|
k2 |
|
|||||||||||||||||||||
|
|
|
|
|
1 |
[w−1(−σ − ϕ0) − w−1(−σ + ϕ0)] |
|
|
|||||||||||||||
|
Res4 |
= |
|
|
(7.50) |
||||||||||||||||||
|
k2 |
|
|||||||||||||||||||||
are the residues at the poles η3 and η4. In addition, |
|
|
|
|
|
||||||||||||||||||
|
3 |
+ |
|
|
4 = k2 |
|
|
|
|
|
2α |
|
|
− |
|
|
2α |
|
|||||
Res |
|
|
Res |
|
|
|
i |
|
cot |
|
π(σ |
− ϕ0) |
|
|
cot |
π(σ + ϕ0) |
. |
(7.51) |
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
One can verify that the residues Res3 and Res4 tend to zero when Im(σ ) → ±∞. Notice also that for certain large values of the parameter | p|, the poles η3 and η4
can reach the contours F+ and F−. When they are exactly on these lines, the integral Ju(C) is determined as
Ju(C) = 2π i Res1 + Res2 + |
1 |
(Res3 |
+ Res4) . |
(7.52) |
2 |
Our goal is to calculate the integral Ju(D) over the contour D = C − (F+ + F−) when the contours F+ and F− are shifted to infinity (Im(η) = ±∞). According to Equations (7.46) and (7.52), the integral Ju(D) is determined by
4
Ju(D) = 2π i |
Resm − Ju(F+ + F−), if |Im(σ )| < A, |
(7.53) |
|||
m=1 |
|
|
|
|
|
and |
|
|
|
|
|
Ju(D) = 2π i Res1 + Res2 + |
1 |
(Res3 |
+ Res4) − Ju(F+ + F−), |
|
|
|
|
||||
2 |
|
||||
if |
|Im(σ )| = A, |
|
|
|
(7.54) |
TEAM LinG
Ju(F+) = |
|
lim |
|
2π i |
· |
1 |
|
|
+ |
Res |
) |
|
|
|
|||||||
|
|
(Res |
|
|
|
|
|||||||||||||||
σ →+i∞ |
|
|
2 |
|
3 |
|
4 |
|
|
|
|
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
δ+iA |
|
−π +δ+iA |
|
−3π/2+iA |
|
||||
|
|
|
|
|
|
|
lim |
lim |
π/2+iA + −δ+iA |
|
+ −π −δ+iA |
|
|||||||||
|
|
|
|
|
+ A→∞ |
δ→0 |
|
|
|||||||||||||
|
|
|
|
|
× |
|
w−1(η + ϕ0) − w−1(η − ϕ0) sin η dη |
(7.61) |
|||||||||||||
|
|
|
|
|
|
|
|
|
p2 + k2 cos η |
|
|
|
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ju(F−) = σ |
|
limi |
|
|
2π i · |
1 |
(Res3 + Res4) |
|
|
|
|||||||||||
182 Chapter 7 |
|
|
|
|
→− |
∞ |
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
−δ−iA |
|
|
π −δ−iA |
3π/2−iA |
|
||||||
|
|
|
|
|
lim |
|
lim |
|
|
|
|
+ +δ−iA |
+ π +δ−iA |
|
|||||||
|
|
|
+ A→∞ |
δ→0 −π/2−iA |
|
||||||||||||||||
|
|
|
× |
w−1 |
(η + ϕ0) − w−1(η − ϕ0) sin η dη . |
(7.62) |
|||||||||||||||
|
|
|
|
|
|
p2 |
+ k2 cos η |
|
|
|
|
|
|
||||||||
Elementary Acoustic and Electromagnetic Edge Waves |
|
||||||||||||||||||||
where |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Ju(F+ + F−) = Ju(F+) + Ju(F−) |
|
(7.55) |
||||||||||||||
and |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
J |
(F |
+ |
) |
= |
−3π/2+iA w−1(η + ϕ0) − w−1(η − ϕ0) sin η dη, |
(7.56) |
|||||||||||||||
u |
|
|
π/2+iA |
|
|
|
|
p2 + k2 cos η |
|
|
|
||||||||||
J (F |
− |
) |
= |
3π/2−iA |
w−1(η + ϕ0) − w−1(η − ϕ0) sin η dη. |
(7.57) |
|||||||||||||||
u |
|
|
−π/2−iA |
|
|
p2 + k2 cos η |
|
|
|
|
|||||||||||
When the poles η3 and η4 are inside the region closed by the contour D + F+ + |
|||||||||||||||||||||
F− and A → ∞, the integrals Ju(F±) equal zero due to the relationships |
|
||||||||||||||||||||
|
|
|
|
w−1(η ± |
|
|
|
1, |
|
|
with Im(η) |
−→ +∞. |
(7.58) |
||||||||
|
|
|
|
ϕ0) −→ 0, |
|
|
with Im(η) |
||||||||||||||
w−1(η + ϕ0) − w−1(η − ϕ0) −→ 0, |
|
|
|
|
|
|
−→ −∞ |
|
|||||||||||||
|
with Im(η) −→ ±∞, |
(7.59) |
|||||||||||||||||||
and |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tan η −→ i, i, |
|
with Im(η) |
−→ +∞. |
(7.60) |
|||||||||||||
|
|
|
|
|
with Im(η) |
||||||||||||||||
|
|
|
|
|
|
|
|
|
|
− |
|
|
|
|
|
|
−→ −∞ |
|
In the case when the poles η3 and η4 are exactly on the contours F+ and F−,
and
Here, the terms with the double limits represent the principal values of the integrals Ju(F±). In view of Equations (7.59) and (7.60) and the relationship Res3,4 → 0 (when Im(η) → ±i∞), the integrals Ju(F±) again equal zero.
TEAM LinG
184 Chapter 7 Elementary Acoustic and Electromagnetic Edge Waves
leads to the equation
(
x1 k2 − p2st − h1pst = 0. (7.67)
By substituting here x1 = R cos β1 and h1 = R sin β1, one obtains pst = k cos β1. Now one could apply the standard procedure of the stationary phase technique to derive the asymptotic expressions for Iu,v , but we use the following idea, which leads to the same result, but faster.
Let us consider the integral
|
|
|
|
|
I0 = |
∞ eipx1 H0(1)(qh1)F( p)dp, |
(7.68) |
||||||||||||||||
|
|
|
|
|
|
|
−∞ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
where F( p) is a slowly varying function. It is clear that |
|
||||||||||||||||||||||
|
|
|
|
|
I0 ≈ F( pst ) |
|
|
∞ eipx1 H0(1)(qh1)dp, |
(7.69) |
||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
−∞ |
|
|
|
|
|
|
|
|
|
|||
and, according to Equation (7.21), |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
I0 ≈ −2iF( pst ) |
eikR |
, |
|
|
|
(7.70) |
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||
|
|
|
|
|
|
|
R |
||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
where R = |
|
x12 + h12. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
In a |
similar way one can evaluate the integral |
|
|
|
|
|
|||||||||||||||||
|
( |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
I1 = |
∞ eipx1 qH1(1)(qh1)F( p)dp |
|
||||||||||||||||||
|
|
|
|
|
−∞ |
∞ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
= − |
d |
e |
ipx |
|
|
(1) |
(qh1)F( p)dp |
|
|||||||||||
|
|
|
|
|
|
|
|
|
1 H0 |
|
|||||||||||||
|
|
|
|
dh1 |
−∞ |
|
|
|
|||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
2iF( pst ) |
d |
|
|
|
eikR |
≈ −2F( pst )k |
h1 eikR |
|
||||||||||
|
|
|
|
dh1 |
|
R |
|
R |
|
R |
|
||||||||||||
|
|
|
|
= −2k sin β1F( pst ) |
eikR |
|
|
|
|
|
|
||||||||||||
|
|
|
|
|
|
, |
|
|
|
|
|
(7.71) |
|||||||||||
|
|
|
|
R |
|
|
|
|
|
|
|||||||||||||
with kR |
|
1. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
There is another advantage of this approach. It is valid under the condition kR 1 |
|||||||||||||||||||||||
and is free from the restriction qst h1 = kR sin β1 |
1 in the standard stationary |
||||||||||||||||||||||
technique. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
TEAM LinG