Файл: Ufimtsev P. Fundamentals of the physical theory of diffraction (Wiley 2007)(348s) PEo .pdf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 28.06.2024

Просмотров: 955

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

9.3 Slope Diffraction in the Configuration of Figure 9.1 237

To calculate the slope diffraction of wave (9.28) at edge L2, we approximate it by the equivalent wave

u1eq = u01

 

 

 

eikz2 cos γ02 eikr2 sin γ02 cos2

ϕ02)

 

∂ϕ02

 

= −u01ikr2 sin γ02 sin2 ϕ02)eikz2 cos γ02 eikr2 sin γ02 cos2ϕ02)

(9.29)

The angle γ02 is shown in Figure 9.2. The amplitude of this wave is determined by the requirement

1

 

∂u1eq

 

 

 

 

 

 

 

 

 

 

1

 

 

 

∂u1 h

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= =

 

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r2

 

 

 

 

 

 

 

 

 

= R1 sin γ01

 

 

 

 

 

 

 

 

 

 

 

 

 

 

∂ϕ2

 

r2

0, ϕ2

 

 

ϕ02

 

∂ϕ1

 

R

1

=

R

21

, ϕ

1=

π

(9.30)

 

 

 

 

 

z2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and equals

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

∂v (R1, ϕ1, ϕ01)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

u01 = −

 

 

 

 

 

 

 

 

 

 

 

eikR21

R1=R21, ϕ1=π ,

(9.31)

ikR21 sin γ01 sin γ02

 

 

 

∂ϕ1

 

 

 

 

or

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

u01 = w01eikR21

 

 

 

 

 

 

 

 

 

 

 

 

(9.32)

where

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

∂v (R21, ϕ1,

ϕ01)

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

w01 = −

ikR21 sin γ01 sin γ02

 

 

 

 

∂ϕ1

 

 

 

 

ϕ1

 

π .

(9.33)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

According to the idea demonstrated in Section 9.2, the elementary edge waves generated at edge L2 due to the slope diffraction are found by the differentiation of

Equations (7.90) and (7.97) with respect to ϕ02, and with the simultaneous replacement of uinc(ζ ) by (9.32):

(1)

=

 

dζ

 

(1)

 

 

eik[R2(ζ )+R21(ζ )]

 

 

duh

 

 

w01(ζ )

 

Fh

 

(ζ )

 

 

,

(9.34)

2π

∂ϕ02

 

R2(ζ )

(t)

=

 

dζ

 

(t)

 

 

eik[R2(ζ )+R21(ζ )]

 

 

duh

 

 

w01(ζ )

 

Fh

(ζ )

 

 

 

.

(9.35)

2π

∂ϕ02

 

R2(ζ )

We recall that the quantities du(1)

and du(t)

are the EEWs generated by the nonuniform

 

 

 

 

h

 

h

 

 

 

 

 

 

 

 

( jh(1)) and the total ( jh(t) = jh(0) + jh(1)) scattering sources, respectively.

The diffracted waves diverging from the whole edge are determined respectively by the integrals:

(1)

=

1

 

 

(1)

 

eik[R2(ζ )+R21(ζ )]

dζ

(9.36)

uh

 

 

 

w01(ζ )

 

Fh

(ζ )

 

2π

L2

∂ϕ02

R2(ζ )

TEAM LinG


238 Chapter 9 Multiple Diffraction of Edge Waves

and

(t)

=

1

 

 

(t)

 

eik[R2(ζ )+R21(ζ )]

dζ .

(9.37)

uh

 

 

 

w01(ζ )

 

Fh

(ζ )

 

2π

L2

∂ϕ02

R2(ζ )

The ray asymptotics of these waves are found by the stationary-phase technique:

(1)

= w01st )

eiπ/4

∂g(1)2, ϕ02, α2)

 

eik(R2+R21)

 

uh

sin γ02

 

 

 

 

 

 

 

 

,

(9.38)

 

 

 

 

 

2π k

 

∂ϕ02

 

 

R2(1 + R22)

(t)

= w01st )

eiπ/4

∂g(ϕ2, ϕ02, α2)

 

 

eik(R2+R21)

 

uh

sin γ02

 

 

 

 

 

.

(9.39)

 

 

 

2π k

 

∂ϕ02

R1(1 + R22)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Here, the caustic parameters ρ2 is defined according to Equation (8.23) as

 

 

 

 

1

 

 

1

 

 

 

 

 

dγ02

 

 

ks

v

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ˆ2

· ˆ2

 

 

 

(9.40)

 

 

 

 

ρ2

= sin γ02

dζ

 

a2 sin γ02

 

 

 

 

 

 

 

 

 

 

 

 

where v2

=

a2t2/dζ is the principal normal to the edge L2 with radius a2 at the

ˆ

 

. These rays propagate in the direction of the vector ks deter-

stationary point ζst

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ˆ2

mined by the equation ks

t2

ki

t2

 

cos γ

02

. Function g(1)

2

, ϕ

02

, α ) is defined

 

 

 

 

ˆ2

ˆ2

=

 

 

 

 

 

 

2

 

 

 

 

 

· ˆ =

 

· ˆ

 

 

 

 

 

 

 

 

 

 

 

 

according to Equation (4.15).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Notice also that Equation (9.40) differs from Equation (9.12) by the sign for

the first term in parentheses. This difference is a consequence of Equations (8.16) and (8.17), which were used in the derivations of both Equations (9.12) and (9.40). According to Equations (8.16) and (8.17), these terms appear due to the differentiation

of the dot products ki

· ˆ = −

ki

· ˆ

=

cos γ

 

. Here, the vector ki

(ki

)

ˆ1

t1

cos γ01 and ˆ2

t2

 

 

02

ˆ1

ˆ2

 

shows the direction of the ray coming to edge L1 (L2) from edge L2 (L1), and the angles γ01 and γ02 are shown in Figure 9.2.

As well as in the case of grazing diffraction as considered in Section 9.2, the waves (9.38) and (9.39) arising due to the slope diffraction are also less in magnitude by a factor of 1/kR21 compared to the waves (8.13) and (8.29) generated by the ordinary edge diffraction. This result is not surprising, because the intensity of the incident field hitting the edge in the case of the slope diffraction is significantly less.

9.3.2Electromagnetic Waves

Here, the above theory is extended for electromagnetic waves (Ufimtsev, 1991). The edge wave traveling from edge L1 to edge L2 can be considered as the sum of two

TEAM LinG


9.3 Slope Diffraction in the Configuration of Figure 9.1 239

waves with orthogonal polarization. One contains the component

 

Ht(1t) = v1(R1, ϕ1, ϕ01)eikR1 ,

(9.41)

with the function v1 shown in Equation (9.28) and equal to zero in direction to edge L2. It is clear that the diffraction of this wave at edge L2 can be investigated in the same way as the diffraction of the acoustic wave (9.27). One approximates the incident wave by the equivalent wave

eq

 

 

 

H1t2

= w01eikR21

 

eikz2 cos γ02 eikr2 sin γ02 cos2

−cos ϕ02)

(9.42)

∂ϕ02

with w01 as defined in Equation (9.33). The EEWs are found by the differentiation of Equations (7.135) and (7.136) (with respect to the angle ϕ02), where one should set E0t = 0 and

H0t exp(ikφi) = w01 exp(ikR21).

Then, for the total edge wave arising at wedge L2, one obtains

 

 

(t)

 

 

Z0

 

 

 

 

∂G(t)(ζ ) eik[R2(ζ )+R21(ζ )]

 

 

 

 

 

 

E

=

 

 

 

 

w01(ζ )

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dζ ,

 

 

 

 

(9.43)

 

 

 

2π

L2

 

∂ϕ02

 

 

 

 

R2(ζ )

 

 

 

 

 

 

 

 

 

(t)

 

1

 

 

w01(ζ ) R2 ×

∂G(t)(ζ ) eik[R2(ζ )+R21(ζ )]

 

 

 

 

 

 

H

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dζ .

(9.44)

 

 

 

2π

L2

 

∂ϕ02

 

 

 

 

 

 

 

R2(ζ )

Asymptotic evaluation of these integrals leads to the ray asymptotics:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(t)

Z0w01st )

eiπ/4

 

 

 

∂g(ϕ2, ϕ02, α2)

 

 

 

eik(R2+R21)

 

 

 

 

 

 

Eϕ2

sin2 γ02

 

 

 

 

 

 

 

 

 

 

 

 

,

(9.45)

 

 

 

 

 

 

 

2π k

 

 

∂ϕ02

 

 

R1(1 + R22)

 

 

(t)

≈ − w01st )

eiπ/4

 

 

 

∂g(ϕ2, ϕ02, α2)

 

 

 

eik(R2+R21)

 

 

 

 

 

 

Hϑ2

sin2 γ02

 

 

 

 

 

 

 

 

 

 

.

(9.46)

 

 

 

 

 

 

 

2π k

 

 

∂ϕ02

 

 

R1(1 + R22)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(t)

 

 

 

(t)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As Hϑ2

= −Ht2 /sin γ02, one obtains the expression

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(t)

w01

 

 

 

eiπ/4

 

∂g(ϕ2, ϕ02

, α2)

 

 

 

eik(R2+R21)

 

 

 

 

 

 

 

Ht2

st )

sin γ02

 

 

 

 

 

 

 

 

 

 

 

,

(9.47)

 

 

 

 

 

 

 

 

 

 

 

 

 

2π k

 

 

 

 

∂ϕ02

 

 

 

 

R1(1 + R22)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

which completely agrees with Equation (9.39) and allows the formulation of the relationship

TEAM LinG


240 Chapter 9 Multiple Diffraction of Edge Waves

 

 

 

uh = Ht ,

if

 

uhinc =

 

Htinc

(9.48)

∂n

∂n

on the scattering edge at ζ = ζst .

between the acoustic and electromagnetic rays arising due to the slope diffraction.

9.4SLOPE DIFFRACTION: GENERAL CASE

The following relationships exist between the acoustic and electromagnetic diffracted rays arising due to the slope diffraction:

 

 

 

 

us = Et ,

if

 

 

 

uincst ) =

 

 

 

Etincst ),

∂n

∂n

 

 

 

 

uh = Ht ,

if

 

 

uincst ) =

 

 

Htincst ),

∂n

∂n

where ζst is the diffraction point on the scattering edge and ˆt is the tangent to the edge.

9.4.1 Acoustic Waves

Suppose that the wave

uinc = v0eikRQ

(9.49)

(with a ray structure of the type of Equation (8.29)) undergoes diffraction at the scattering object with edge L. The object can be acoustically soft or hard (with the boundary conditions u = 0 or du/dn = 0). The geometry of the problem is illustrated

in Figures 9.3 and 9.4. The point Q belongs to the caustic of the incident wave.

It is assumed that uinc = 0 and ∂uinc/∂n =0 at the point ζ on the scattering edge L. The diffracted wave is calculated in the same manner as in Sections 9.2 and 9.3. The incident wave (9.49) is approximated by the equivalent wave

 

ueq = u0 ∂ϕ0 eikz cos γ0 eikr sin γ0 cosϕ0)

 

= −u0ikr sin γ0 sin ϕ0) eikz cos γ0 eikr sin γ0 cosϕ0).

(9.50)

The local polar coordinates r, ϕ, z are shown in Figure 9.4. The angle ϕ is measured from the illuminated face of the edge (0 ≤ ϕ α, 0 ≤ ϕ0 < π ).

TEAM LinG


9.4 Slope Diffraction: General Case 241

Figure 9.3 The plane P contains the tangent ˆt to the edge L, the incident ray , and the point q (which is the projection of the point Q on the perpendicular rq to the tangent ˆt). The vector nˆ is the unit normal to the plane P. (Reprinted from Ufimtsev and Rahmat-Samii (1995) with the permission of

Annales des Telecommunications.)

Figure 9.4 Here W is the tangential wedge to the scattering edge L, the plane T is the face of wedge W , the vector τ is perpendicular to the tangent t and belongs to the plane T . The angle γ0 indicates the direction of the incident ray. The point P(R, ϑ , ϕ) is the observation point. (Reprinted from Ufimtsev and Rahmat-Samii (1995) with the permission of Annales des Telecommunications.)

TEAM LinG