Файл: Ufimtsev P. Fundamentals of the physical theory of diffraction (Wiley 2007)(348s) PEo .pdf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 28.06.2024

Просмотров: 954

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

242 Chapter 9 Multiple Diffraction of Edge Waves

The amplitude u0 of the equivalent wave is determined by the equation

∂ueq

1 ∂ueq

= = =

 

 

∂uinc

1

 

∂uinc

 

=

1

 

∂uinc

 

=

 

 

 

= − r ∂ϕ

 

 

 

=

 

 

= RQ

 

 

 

 

 

 

= rq

 

 

 

(9.51)

 

∂n

z r 0, ϕ ϕ0

∂n

 

∂ϑQ

ϑQ

0

 

∂ϕq

ϕq

 

0

and equals

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

eikRQ

 

∂v0

 

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

u0 =

ikRQ sin γ0

 

∂ϑQ

ϑQ

 

0 .

 

 

 

 

 

 

(9.52)

It can be written in the form

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

u0 = w0eikφi ,

 

 

 

 

 

 

 

 

 

 

 

(9.53)

where φi = RQ and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

∂v0

 

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

w0 =

ikRQ sin γ0

∂ϑQ

ϑQ

 

0 .

 

 

 

 

 

 

(9.54)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

According to the idea introduced in Section 9.2, the waves diffracted at edge L are

found by the differentiation of Equations (8.3), (8.4) with the simultaneous replacement of uinc(ζ ) = u0(ζ ) exp[ikφi(ζ )] by the quantity (9.53). As a result, the edge

waves generated by the nonuniform/fringe scattering sources ( js,h(1)) are determined as

(1)

=

1

 

 

 

∂Fs(1)(ζ ) eik[R(ζ )+RQ(ζ )]

dζ

(9.55)

us

 

 

 

 

L w0(ζ )

 

 

 

 

 

 

 

 

 

2π

 

∂ϕ0

 

 

R

and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1)

=

1

 

 

∂Fh(1)(ζ ) eik[R(ζ )+RQ(ζ )]

dζ ,

(9.56)

uh

 

 

 

L w0(ζ )

 

 

 

 

 

 

 

2π

 

∂ϕ0

 

 

R

and the edge waves radiated by the total scattering sources ( js,h(t) = js,h(1) + js,h(0)) are described by

(t)

=

1

 

 

 

∂Fs(t)(ζ ) eik[R(ζ )+RQ(ζ )]

dζ

(9.57)

us

 

 

 

 

L w0(ζ )

 

 

 

 

 

 

 

 

 

2π

 

∂ϕ0

 

 

R

and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(t)

=

1

 

 

∂Fh(t)(ζ ) eik[R(ζ )+RQ(ζ )]

dζ .

(9.58)

uh

 

 

 

L w0(ζ )

 

 

 

 

 

 

 

2π

 

∂ϕ0

 

 

R

Their ray asymptotics can be derived by the stationary-phase technique demonstrated in Section 8.1. However, we can obtain them much faster by the differentiation of

TEAM LinG


9.4 Slope Diffraction: General Case 243

the ray asymptotics (8.12), (8.13) and (8.29) with the simultaneous replacement of uist ) by (9.53):

us(1) uh(1)

us(t) uh(t)

 

 

 

 

 

 

 

 

 

∂f (1), ϕ

, α)

eik(R+RQ),

 

 

 

1

 

eiπ/4

 

0

 

 

 

 

w0st )

 

 

∂ϕ0

 

 

(9.59)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

∂ϕ0

 

 

=

 

R(1 + R/ρ) sin γ0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

∂g(1), ϕ0,

 

 

 

 

 

 

 

2π k

α)

 

 

 

 

 

 

1

 

eiπ/4

 

∂f (ϕ, ϕ0, α)

e

 

 

 

 

 

 

w0st )

 

 

∂ϕ0

 

ik(R

+

RQ)

,

(9.60)

 

 

 

 

 

 

 

 

, ϕ , α)

 

 

 

 

 

 

 

 

 

 

 

∂g

 

 

 

 

 

 

 

 

 

=

 

R(1 + R/ρ) sin γ0

2π k

0

 

 

 

 

 

 

 

 

 

 

∂ϕ0

 

 

 

 

 

 

 

where the stationary point ζst is calculated according to Equation (8.7) and the caustic parameter ρ = ρ(ζst ) is defined in Equation (8.23).

In view of Equation (9.54), the fields arising due to the slope diffraction are less in magnitude by a small factor 1/kRQ compared to the ordinary diffracted fields (8.12), (8.13) and (8.29).

Notice that the integral representations (9.55), (9.56), (9.57), and (9.58) allow the calculation of the slope diffracted field in the vicinity of caustics and foci.

9.4.2Electromagnetic Waves

Let us define an incident electromagnetic wave as

 

Einc = E0i eikRQ ,

Hinc = H0i eikRQ ,

(9.61)

where

 

 

E0i = Z0[H0i

× RQ].

(9.62)

i

Suppose that in the direction to the scattering edge L, the quantities E0, H0 have zeros, but their first normal derivatives are not equal to zero:

E0

= 0, H0i = 0

on L

 

 

 

 

 

(9.63)

∂E0i

=

1 ∂E0i

 

∂H0i

=

1 ∂H0i

 

 

 

 

 

 

=0,

 

 

 

 

 

=0 on L.

(9.64)

∂n

RQ

∂ϑQ

 

∂n

RQ

∂ϑQ

As in the previous section, one approximates the actual incident wave (in the vicinity of the edge L) by the equivalent wave with components

Eteq = −ikrE0eqt

sin γ0 sinϕ0)eikz cos γ0 eikr sin γ0 cosϕ0),

(9.65)

Hteq = −ikrH0eqt

sin γ0 sinϕ0)eikz cos γ0 eikr sin γ0 cosϕ0),

(9.66)

which are the derivatives of the ordinary plane wave with respect to the incidence angle ϕ0. The amplitudes of the equivalent wave are found with the requirement that

TEAM LinG


244 Chapter 9 Multiple Diffraction of Edge Waves

the normal derivatives of this wave (on the scattering edge) are equal to those of the actual incident wave:

 

 

∂Eteq

∂Eteq

 

 

 

 

 

 

 

 

 

 

 

 

eq

 

∂E0i t

ikR

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

 

∂n

= − r∂ϕ

 

 

 

 

 

 

 

= ik sin γ0E0t

=

RQ∂ϑQ e

 

 

,

(9.67)

 

 

 

z

 

r 0, ϕ

 

ϕ

 

Q

 

 

 

 

eq

 

eq

 

 

= =

= 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ϑQ 0

 

∂Ht

∂Ht

 

 

 

 

 

 

 

 

 

 

 

 

 

eq

 

∂H0i t

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

 

 

 

= − r∂ϕ

 

 

 

 

 

 

 

 

= ik sin γ0H0t

=

RQ∂ϑQ e Q

 

 

 

 

 

 

 

∂n

 

z

r

=

0, ϕ

 

ϕ

 

 

 

.

(9.68)

 

 

 

 

 

 

 

=

 

=

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ϑQ

 

0

 

Hence

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

eq

 

 

 

1

 

 

ikR

 

 

∂E0i t

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E0t

 

=

ikRQ sin γ0

e

 

Q

 

∂ϑQ

 

 

 

 

 

 

 

 

 

 

 

(9.69)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ϑQ 0

 

 

 

 

 

 

 

and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

eq

 

 

 

1

 

 

ikR

 

∂H0i t

 

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H0t

=

ikRQ sin γ0

 

e

 

Q

∂ϑQ

 

 

.

 

 

 

 

 

 

 

 

(9.70)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ϑQ

 

0

 

 

 

 

 

 

 

 

 

As in the previous section, the elementary edge waves diffracted at edge L are found by the differentiation of Equations (7.135) and (7.136), with respect to the angle ϕ0 and with the simultaneous replacement of E0t (ζ ), H0t (ζ ) by the quantities (9.69), (9.70):

dE

dH

Here,

(t)(ζ )

=

E0eqt

(ζ )

 

 

E

 

∂ϕ0

(t)

=

 

dζ

(t)(ζ )eikRQ(ζ )

eikR(ζ )

 

 

 

,

 

 

 

 

 

2π E

R(ζ )

(t) = [ × (t)]

R dE /Z0.

 

(t), ϑ , ϕ) + Z0H0eqt (ζ )

F

 

G(t), ϑ , ϕ).

∂ϕ0

The total edge wave created by all EEWs is determined by the integrals

 

 

E

(t)

=

1

 

(t)(ζ )

eik[R(ζ )+RQ(ζ )]

dζ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2π

L E

 

 

R(ζ )

and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

(t)

=

 

 

1

 

 

[

R

(t)(ζ )

]

eik[R(ζ )+RQ(ζ )]

dζ .

 

2π Z0 L

 

 

 

 

× E

R(ζ )

(9.71)

(9.72)

(9.73)

(9.74)

(9.75)

TEAM LinG


Problems 245

The ray asymptotics of this wave are found by the stationary-phase technique:

(t)

(t)

 

eq

 

eiπ/4

 

 

 

∂g(ϕ, ϕ0

, α) eik(R+RQ)

 

Eϕ

= −Z0Hϑ

 

= Z0H0t

sin2

 

 

 

 

 

 

 

 

 

 

 

,

(9.76)

 

 

 

 

 

 

 

 

γ0

2π k

 

∂ϕ0

R(1 + R/ρ)

(t)

(t)

 

eq

eiπ/4

 

 

 

∂f (ϕ, ϕ0, α) eik(R+RQ)

 

Eϑ

= Z0Hϕ

= −E0t

sin2 γ0

 

 

 

 

 

 

 

,

(9.77)

 

 

 

 

 

2π k

 

 

 

∂ϕ0

R(1 + R/ρ)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where, for all functions of the variable ζ , one should take their values at the stationary point ζst . In view of Equations (7.149) and (7.150), these expressions can be written in terms of the components parallel to the tangent ˆt(ζst ),

eiπ/4

Et(t) = E0eqt sin γ02π k

eiπ/4

Ht(t) = H0eqt sin γ02π k

∂f (ϕ, ϕ0, α)

eik(R+RQ)

 

 

 

 

 

 

,

(9.78)

 

 

 

∂ϕ0

R(1 + R/ρ)

 

∂g(ϕ, ϕ0, α)

 

eik(R+RQ)

 

 

 

 

 

.

(9.79)

 

 

 

∂ϕ0

 

R(1 + R/ρ)

Their comparison with Equation (9.60) leads to the equivalence relationships between the acoustic and electromagnetic diffracted rays arising due to the slope diffraction:

 

 

 

 

 

us = Et ,

if

 

 

 

uincst ) =

 

 

 

Etincst ),

(9.80)

∂n

∂n

 

 

 

 

 

uh = Ht ,

if

 

 

uincst ) =

 

 

Htincst ),

(9.81)

∂n

∂n

 

 

 

 

 

 

 

 

 

 

 

where ζst is the diffraction point on the scattering edge.

PROBLEMS

9.1Use the asymptotic expression (9.10) for the grazing diffraction of acoustic waves, apply the stationary-phase technique, and confirm the ray approximation (9.11).

9.2Use the asymptotic expressions (9.19), (9.20) for the grazing diffraction of electromagnetic waves, apply the stationary-phase technique, and confirm the ray approximations (9.23), (9.25). Compare Equation (9.25) with Equation (9.11) and establish the equivalence relationship between acoustic and electromagnetic diffracted rays.

9.3Use the asymptotic expressions (9.36), (9.37) for the slope diffraction of acoustic waves, apply the stationary-phase technique, and confirm the ray approximations (9.38), (9.39).

9.4Use the asymptotic expressions (9.43), (9.44) for the slope diffraction of electromagnetic waves, apply the stationary-phase technique, and confirm the ray approximations (9.45), (9.46) and (9.47). Compare Equation (9.47) with Equation (9.39), and establish the equivalence relationship between acoustic and electromagnetic diffracted rays.

TEAM LinG


TEAM LinG

Chapter 10

Diffraction Interaction of Neighboring Edges on

a Ruled Surface

The following relationships exist between acoustic and electromagnetic diffracted waves in the directions belonging to the diffraction cone:

 

inc

inc

 

 

 

∂usinc(ζ )

uh = Ht ,

if uh

(ζ ) = Ht

(ζ ),

us = Et ,

if

 

 

∂n

Einc(ζ )

=t .

n

Here, ˆt(nˆ ) is the tangent (normal) to the edge at the diffraction point ζ . These relationships, together with Equations (7.149) and (7.150), allow one to determine all components of the electromagnetic diffracted wave.

Consider a diffraction interaction of two edges with a common face. If this face is bent, the edge wave already undergoes diffraction on its way along the face to another edge. This problem is not amenable to theoretical treatment in a general case. However, the disturbing effect of the face can be neglected in the particular case illustrated in Figure 10.1. The common face S of edges L1 and L is a ruled surface whose generatrices coincide with the edge-diffracted rays arising at the edge L1 and propagating to the edge L. It is assumed that a plane tangential to the face does not change its orientation along the generatrix. Notice that a planar facet can be considered as a limiting case of a ruled surface. Therefore, the theory developed in the following is applicable in this case as well.

The present section is based on the papers by Ufimtsev (1989, 1991).

Fundamentals of the Physical Theory of Diffraction. By Pyotr Ya. Ufimtsev

Copyright © 2007 John Wiley & Sons, Inc.

247

TEAM LinG