Файл: Ufimtsev P. Fundamentals of the physical theory of diffraction (Wiley 2007)(348s) PEo .pdf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 28.06.2024

Просмотров: 951

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

248 Chapter 10 Diffraction Interaction of Neighboring Edges on a Ruled Surface

Figure 10.1 Element of a ruled surface S with two edges (L1 and L). The unit vectors ˆt1, ˆt are tangential to the edges. The unit vectors τˆ1, τˆ are tangential to the surface S and perpendicular to ˆt1, ˆt, respectively. The quantities r1, ϕ1, z1 and r, ϕ, z are local polar coordinates. The unit vector nˆ is normal to the plane tangential to S and containing the generatrix R10 as well as the tangents ˆt1, ˆt and τˆ1, τˆ. (Reprinted from Ufimtsev (1989) with the permission of the Journal of Acoustical Society of America.)

10.1 DIFFRACTION AT AN ACOUSTICALLY HARD SURFACE

Suppose that the edge wave propagating from the edge L1 has a ray structure and can be represented in the form of Equation (8.29) as

u1h(R1, ϕ1) = u01g(ϕ1, ϕ01, α1)

 

eikR1+iπ/4

 

sin γ01

 

,

(10.1)

2π kR1(1 + R11)

where the function g(ϕ1, ϕ01, α1) is defined in Equation (2.64). In the vicinity of the edge L, this wave can be approximated by the two merging plane waves

lim

1

u

1h

(R

10

, 0)eikz cos γ0

(eikr sin γ0 cosϕ0)

+

eikr sin γ0 cos+ϕ0)). (10.2)

2

ϕ0

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The first term here plays the role of the incident wave in the canonical wedge diffraction problem utilized in Chapter 7 to derive the asymptotic approximation (8.3), (8.4). Therefore, replacing the quantity u0(ζ ) exp(ikφi) in Equation (8.4) by (1/2)u1h(R10, 0), we obtain the asymptotic expression

uh(t) =

1

L u1h(ζ )Fh(t), mˆ )

eikR(ζ )

dζ ,

with u1h(ζ ) = u1h(R10, 0), (10.3)

4π

R(ζ )

for the edge wave generated by the total scattering source jh(t) = jh(1) + jh(0). One should note that in this particular case, jh(0) = u1h(R1, 0).

The ray asymptotic of this wave can be found by the stationary-phase technique. However, it can be obtained directly from Equation (8.29) if we replace there uincst ) by (1/2)u1hst ) and set ϕ0 = 0:

TEAM LinG


10.1 Diffraction at an Acoustically Hard Surface 249

(t)

=

1

 

 

 

eikR+iπ/4

 

uh

 

u1h

st )g(ϕ, 0, α)

 

 

 

,

(10.4)

2

 

 

 

 

 

 

sin γ0

 

2π kR(1

+ R/ρ)

 

 

 

 

 

 

 

 

 

 

 

 

where

u1hst ) = u01g(0, ϕ01, α1)

 

eikR10+iπ/4

 

sin γ01

 

.

(10.5)

2π kR10(1 + R101)

The letters α1, α denote the external angles of edges L1, L (π α1 ≤ 2π , π α ≤ 2π ), and the caustic parameters ρ1, ρ are defined according to Equation (8.23).

The ray asymptotic (10.4) is not applicable near the shadow boundary ϕ = π , where it becomes singular. Instead, one can suggest the following heuristic approximation of Equation (10.3) valid in all directions along the diffraction cone (ϑ = π γ0, 0 ≤ ϕ α):

uh(t) = u1h

 

 

eikR

 

(R10

, 0)Dh, ϕ, γ0)

 

 

,

(10.6)

R(1

 

 

 

 

 

+ R/ρ)

 

where

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dh, ϕ, γ0) =

 

 

χ

 

v(kχ sin γ0, ϕ)eikχ sin γ0 ,

 

(10.7)

 

 

 

 

 

 

sin γ0

 

 

 

2

sin

π

cos

ϕ

 

 

 

 

 

 

 

 

 

 

 

ϕ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

 

 

 

 

eiπ/4

sgn(cos 2 )eit2 dt,

 

v(s, ϕ)

=

 

 

N

2

 

eis cos ϕ

(10.8)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

π

 

 

 

 

 

 

ϕ

 

 

 

π

 

 

cos

ϕ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2s

 

 

cos N

− cos N

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

with N = α/π , and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

χ =

 

R10R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sin γ0.

 

 

 

 

(10.9)

 

 

 

 

 

 

 

 

 

 

 

 

 

R10 + R

 

 

 

 

According to the relationships

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

eis

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

v(s, π 0) =

 

 

 

 

 

(10.10)

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ρ = ρ1 + R10,

for ϕ = π ,

 

(10.11)

TEAM LinG


250 Chapter 10 Diffraction Interaction of Neighboring Edges on a Ruled Surface

the diffracted field u(t) is discontinuous at the shadow boundary (ϕ1 = 0, ϕ = π ):

uh(t) =

1

+ R, 0).

(10.12)

2 u1h(R10

However, the sum of the diffracted and incident fields (uh(t) + u1h) is continuous there. One can also show that the normal derivative of this sum is also continuous at the shadow boundary.

Utilizing the asymptotic approximation

[sgn(x)]∞

e

it2

dt

eix2

with |x|

 

 

 

 

 

,

1,

(10.13)

x

 

2ix

it is easy to verify

asymptotic

(10.4)

 

in

 

 

 

 

 

 

2sin γ0

ϕ2

 

cos

 

 

that the uniform approximation (10.6) reduces to the ray the directions away from the shadow boundary, where 1.

10.2 DIFFRACTION AT AN ACOUSTICALLY SOFT SURFACE

The geometry of the problem is shown in Figure 10.1. Suppose that the edge wave

u1s(R1, ϕ1) = u01 f (ϕ1, ϕ01, α1)

 

eikR1+iπ/4

(10.14)

sin γ01

 

2π kR1(1 + R11)

propagates from the edge L1 along the face S and, due to the boundary condition, equals zero in the direction ϕ1 = 0 to the edge L. We note that f (0, ϕ01, α1) = 0 in accordance with the definition given by Equation (2.62). Thus, the diffraction of the wave (10.14) at the edge L is a particular case of the slope diffraction, and it can be treated, as shown below, with a little modification of the technique developed in Chapter 9.

First, we notice that an appropriate wave (equivalent to the incident wave (10.14) in the vicinity of edge L) can be constructed from the combination of the incident and reflected plane waves

 

 

eikz cos γ0 (eikr sin γ0 cosϕ0) − eikr sin γ0 cos+ϕ0))

(10.15)

running along the face to the edge. Namely,

 

 

 

 

 

 

 

 

useq = u0eq eikz cos γ0

(eikr sin γ0 cosϕ0) − eikr sin γ0 cos+ϕ0))|ϕ0=0

 

∂ϕ0

 

= −u0eq2ikr sin γ0 sin ϕ eikz cos γ0 eikr sin γ0 cos ϕ .

 

(10.16)

The amplitude factor ueq

of the equivalent wave is determined by the requirement

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

∂u1s

(R1, ϕ1)

 

 

 

 

 

1

 

∂useq

 

 

 

R10 sin γ01

∂ϕ1

 

R1

R10, ϕ1

 

0

=

r

 

∂ϕ

z r 0, ϕ

0

(10.17)

 

 

 

 

 

 

 

 

 

=

=

 

 

 

 

 

 

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= =

 

TEAM LinG


10.2 Diffraction at an Acoustically Soft Surface 251

and equals

eq

1

 

∂u1s(R1, ϕ1)

 

=

 

=

 

 

 

 

 

 

 

 

 

 

 

 

 

u0

= −

i2kR10 sin γ01 sin γ0

 

∂ϕ1

R1

 

R10, ϕ1

 

0 .

(10.18)

 

 

 

 

 

 

 

 

 

 

 

According to the idea introduced in Chapter 9, the edge wave arising due to the slope diffraction of the equivalent wave (10.16) is determined by the derivative of (8.4) with the simultaneous replacement of u0(ζ ) exp(ikφi) by u0eq:

 

1

 

 

 

=

 

 

eikR(ζ )

 

 

us(t) =

2π

L u0eq

(ζ ) ∂ϕ0

Fs(t), mˆ ) ϕ0

 

0

·

R(ζ )

dζ .

(10.19)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The ray asymptotic of the diffracted field (10.19) can be found by the stationary-

phase technique or directly by the differentiation of Equation (8.29) with the replacement of u0(ζ ) exp(ikφi) by u0eq:

(t)

eq

 

∂f (ϕ, 0, α)

 

eikR+iπ/4

 

us

= u0

st )

 

sin γ0

 

.

(10.20)

 

∂ϕ0

2π kR(1 + R/ρ)

This function is singular in the direction of the shadow boundary (ϕ = π ). Instead of it one can suggest the following heuristic approximation of Equation (10.19) valid in all directions along the diffraction cone (ϑ = π γ0, 0 ≤ ϕ α):

(t)

=

i ∂u1sst )

eikR

 

us

 

 

 

Ds, ϕ, γ0)

 

,

(10.21)

k

∂n

 

 

 

 

 

 

 

 

 

R(1 + R/ρ)

 

where

 

∂u1sst )

 

 

1

 

 

 

 

 

 

∂u

 

(R1, ϕ1)

 

=

 

 

=

 

 

 

 

 

 

∂n

 

=

R10 sin γ01

 

 

1s∂ϕ1

R1

 

R10,ϕ1 0

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ds, ϕ, α) = −

 

χ

 

 

 

 

 

 

 

 

 

 

ikχ sin γ0

 

 

 

 

 

 

w(kχ sin γ0, ϕ)e

 

 

 

 

,

 

sin γ0

 

 

 

 

 

and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

χ =

 

 

R10R

 

sin γ0.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R10 + R

 

 

 

 

 

 

 

 

 

 

 

Here,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

π

 

 

ϕ

 

 

 

 

 

 

ϕ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sin

 

sin

 

cos2

 

 

 

 

 

 

 

 

&

ei(sπ/4)

 

 

 

2

 

 

 

 

 

 

 

ϕ

 

 

 

N

N

2

 

 

 

 

 

 

 

w(s, ϕ) = −

 

 

%cos

π

 

ϕ

&2 F %√

2s

cos

 

 

 

 

 

,

N2

2

 

 

− cos

 

π s

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(10.22)

(10.23)

(10.24)

(10.25)

TEAM LinG