Файл: Doicu A., Wriedt T., Eremin Y.A. Light scattering by systems of particles (OS 124, Springer, 2006.pdf
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 28.06.2024
Просмотров: 837
Скачиваний: 0
A.1 Spherical Bessel Functions |
255 |
|
2n + 1 |
zn |
(x) = zn−1(x) + zn+1(x), |
|
|
(A.6) |
||||
|
x |
|
|
|||||||
(2n + 1) z |
(x) = nz |
n−1 |
(x) |
− |
(n + 1)z |
n+1 |
(x), |
(A.7) |
||
|
|
n |
|
|
|
|
|
and
d
dx [xzn(x)] = xzn−1(x) − nzn(x), (A.8)
where zn stands for any spherical function. The Wronskian relation for the spherical Bessel and Neumann functions is
|
jn(x)yn |
(x) − jn(x)yn(x) = |
|
1 |
|
|
|
|
|
|||||||||||||||
|
x2 |
|
|
|
|
|||||||||||||||||||
and for small values of the argument we have |
|
|
|
|
|
|
|
|
||||||||||||||||
|
jn(x) = |
|
|
|
xn |
1 + O x2 , |
|
|
|
|
||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||
|
|
|
|
(2n + 1)!! |
|
|
|
|
|
|
|
|
|
|
||||||||||
|
yn(x) = |
|
|
(2n − 1)!! |
1 + O x2 |
|
|
|
|
|||||||||||||||
|
|
|
|
− |
xn+1 |
|
|
|
|
|
|
|
|
|
|
|||||||||
as x → 0, while for large value of the argument, |
|
|
|
|
|
|
|
|
||||||||||||||||
jn(x) = |
1 |
cos |
|
|
|
|
(n + 1)π |
! |
|
|
|
|
1 |
" |
||||||||||
|
|
x − |
|
|
|
|
|
|
1 + O |
|
|
|
, |
|||||||||||
x |
|
2 |
|
|
|
x |
||||||||||||||||||
yn(x) = |
1 |
sin |
|
|
|
(n + 1)π |
! |
|
|
|
|
1 |
|
" |
||||||||||
|
|
x − |
|
|
|
|
|
1 + O |
|
|
, |
|||||||||||||
x |
|
2 |
|
|
x |
|||||||||||||||||||
(1) |
(x) = |
ej[x−(n+1)π/2] ! |
1 |
" |
|
|
|
|
||||||||||||||||
hn |
|
|
|
|
|
|
|
|
|
|
1 + O |
|
|
|
, |
|
|
|
|
|||||
|
|
|
x |
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
x |
|
|
|
|
|
|
|
|
|||
h(2) |
(x) = |
e−j[x−(n+1)π/2] |
!1 + O |
1 |
" |
|
|
|
|
|||||||||||||||
n |
|
|
|
|
x |
|
|
|
|
|
|
|
|
|
|
x |
|
|
|
|
|
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
as x → ∞.
Spherical Bessel functions can be expressed in terms of trigonometric func-
tions, and the first few spherical functions have the explicit forms |
|
||||||||||||
j0 |
(x) = |
sin x |
, |
|
|
|
|
|
|
|
(A.9) |
||
|
|
|
|
|
|
|
|
||||||
|
|
|
x |
|
|
|
|
|
|
|
|
|
|
y0 |
(x) = − |
cos x |
|
|
|
|
|
|
(A.10) |
||||
|
|
, |
|
|
|
|
|
|
|||||
x |
|
|
|
|
|
|
|
||||||
j1 |
(x) = |
sin x |
− |
cos x |
, |
|
(A.11) |
||||||
|
|
|
|
|
|
|
|||||||
x2 |
|
x |
|||||||||||
|
(x) = − |
cos x |
|
sin x |
(A.12) |
||||||||
y1 |
|
|
− |
|
|
|
, |
||||||
x2 |
|
|
x |
|
256 A Spherical Functions
and
h |
(1) |
(x) = |
|
ejx |
, |
|
|
0 |
|
jx |
|
||||
|
|
|
|
|
|||
|
|
|
|
|
|
||
|
(2) |
(x) = |
− |
e−jx |
|||
h0 |
|
|
. |
||||
|
jx |
The spherical Bessel functions are computed by downward recursion. This recursion begins with two successive functions of small values and produces functions proportional to the Bessel functions rather than the actual Bessel functions. The constant of proportionality between the two sets of functions is obtained from the function of order zero j0. Alternatively, the spherical Bessel functions can be computed with an algorithm involving the auxiliary function χn [169]
χn(x) = jn−1(x) .
In this case, the functions χn are calculated with the downward recurrence relation
1
χn(x) = 2nx+1 − χn+1(x) ,
the constant of proportionality is obtained from the function of order one, χ1(x) = 1/x − cot x, and the spherical Bessel functions are computed with the upward recursion
jn(x) = χn(x)jn−1(x)
starting at j1. The spherical Neumann functions are calculated by upward recursion starting with the functions of order zero and one, y0 and y1, respectively.
A.2 Legendre Functions
With the substitution x = cos θ, the associated Legendre equation transforms to
|
|
m2 |
|
|
|
1 − x2 f (x) − 2xf (x) + n(n + 1) − |
|
|
|
f (x) = 0. |
(A.13) |
1 |
− |
x2 |
|||
|
|
|
|
|
This equation is characterized by regular singularities at the points x = ±1 and at infinity. For m = 0, there are two linearly independent solutions to the Legendre di erential equation and these solutions can be expressed as power series about the origin x = 0. In general, these series do not converge for
A.2 Legendre Functions |
257 |
x = ±1, but if n is a positive integer, one of the series breaks o after a finite number of terms and has a finite value at the poles. These polynomial solutions are called Legendre polynomials and are denoted by Pn(x). For m = 0, the solutions to (A.13) which are finite at the poles x = ±1 are the associated Legendre functions. If m and n are integers, the associated Legendre functions are defined as
|
|
|
|
|
|
|
|
|
P m(x) = 1 |
− |
x2 m/2 |
dmPn(x) |
. |
|
|
||||||||
|
|
|
|
|
|
|
|
|
n |
|
|
|
dxm |
|
|
|
|||||||
Useful recurrence relations satisfied by Pnm are |
|
|
|
|
|
||||||||||||||||||
|
(2n + 1) xPnm(x) = (n − m + 1) Pnm+1(x) + (n + m) Pnm−1(x), |
||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(A.14) |
|
|
|
|
|
|
|
|
||||||||||||||||
(2n + 1) |
|
1 − x2 |
Pnm(x) = (n + m − 1) (n + m) Pnm−−11(x) |
(A.15) |
|||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
− (n − m + 1) (n − m + 2) Pnm+1−1(x), |
|
|||||||||
(2n + 1) |
1 |
− |
x2P m−1 |
(x) = P m (x) |
|
P m |
(cos θ) , |
(A.16) |
|||||||||||||||
|
|
|
|
|
|
|
n |
|
n+1 |
− n−1 |
|
|
|
|
|
||||||||
(2n + 1) 1 |
− |
x2 |
d |
P m(x) = (n + 1) (n + m) P m |
|
(x) |
|
||||||||||||||||
|
|
|
|
||||||||||||||||||||
|
|
|
|
|
|
dx n |
|
|
|
|
|
|
n−1 |
|
|
||||||||
|
|
|
|
|
|
|
d |
|
|
|
−n (n − m + 1) Pnm+1(x), |
(A.17) |
|||||||||||
1 |
|
− |
x2 |
P m |
(x) = (n + m)P m |
(x) |
− |
nxP m(x). |
(A.18) |
||||||||||||||
|
|
||||||||||||||||||||||
|
|
|
|
|
dx n |
|
|
|
n−1 |
|
|
|
n |
|
The angular functions πm and τ m are related to the associated Legendre
n n functions by the relations
|
|
|
m |
|
|
|
|
Pnm(cos θ) |
|
|
|
|
(A.19) |
||||||||||
|
|
|
πn (θ) = |
|
|
sin θ |
|
|
, |
|
|
|
|
|
|||||||||
|
|
|
τnm(θ) = |
d |
Pnm(cos θ). |
|
|
(A.20) |
|||||||||||||||
|
|
|
dθ |
|
|
||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
For positive values of m and for θ → 0 or θ → π, |
|
|
|
|
|
||||||||||||||||||
m |
(cos θ) |
→ |
(n + m)! |
2 |
|
|
m |
|
2n + 1 |
|
|||||||||||||
Pn |
|
|
|
|
|
|
|
|
|
|
|
Jm |
|
|
θ |
||||||||
(n |
− |
m)! |
2n + 1 |
|
|
2 |
|||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
and |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
m |
(θ) → |
1 |
|
|
|
(n + m)! |
|
|
|
|
θ |
m−1 |
|
|||||||||
|
mπn |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
, |
|
||||||
|
2 |
(n |
− |
m)!(m |
− |
1)! |
2 |
|
|||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
m−1 |
|
||||||
|
m |
(θ) → |
1 |
|
|
|
(n + m)! |
|
|
|
|
θ |
|
||||||||||
|
τn |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
, |
|
||||||
|
2 |
|
(n |
− |
m)!(m |
− |
1)! |
|
2 |
|
|||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|