Файл: Doicu A., Wriedt T., Eremin Y.A. Light scattering by systems of particles (OS 124, Springer, 2006.pdf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 28.06.2024

Просмотров: 836

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

260 A Spherical Functions

The following orthogonality relations are important for solving scattering problems:

π

Pnm(cos θ)Pnm(cos θ) sin θ dθ = δnn ,

0

π

τnm(θ)τnm(θ) + m2πnm(θ)πnm (θ) sin θ dθ = n(n + 1)δnn ,

0

π

[πnm(θ)τnm(θ) + τnm(θ)πnm (θ)] sin θ dθ = 0.

0

For negative arguments we have the symmetry relation

Pnm(cos θ) = (1)n−mPnm(cos θ)

and consequently,

πm (π

θ) = (

1)n−mπm(θ),

(A.24)

n

n

 

τ m (π

θ) = (

1)n−m+1τ m(θ).

(A.25)

n

n

 


B

Wave Functions

In this appendix, we summarize the basic properties of the characteristic solutions to the scalar and vector wave equations. We recall the integral and orthogonality relations, and the addition theorems under coordinate rotations and translations.

B.1 Scalar Wave Functions

The spherical wave functions form a set of characteristic solutions to the Helmholtz equation and are given by [215]

u1mn,3 (kr) = zn1,3 (kr) Pn|m| (cos θ) ej,

where n = 0, 1, . . . ,, m = −n, . . . , n, (r, θ, ϕ) are the spherical coordinates of the position vector r, zn1 designates the spherical Bessel functions jn, zn3 stands for the spherical Hankel functions of the first-order h(1)n , and Pn|m| denotes the normalized associated Legendre functions. u1mn is an entire solution to the Helmholtz equation (solution which are defined in all of R3) and u3mn is a radiating solution to the Helmholtz equation in R3 − {0}.

The Green function or the fundamental solution is defined as

g (k, r, r ) =

ejk|r−r |

,

r = r

 

 

|

r

r

|

 

 

 

4π

 

 

 

and straightforward di erentiation shows that for fixed r R3, the fundamental solution satisfies the Helmholtz equation in R3 − {r }. The expansion of the Green function in terms of spherical wave functions is given by

 

jk

∞ n

# u3

(kr ) u1

(kr) ,

r < r

g (k, r, r ) =

 

−mn

mn

 

 

 

 

 

 

 

2π n=0 m=−n

u1 mn (kr ) umn3

(kr) ,

r > r .


262 B Wave Functions

The spherical harmonics are defined as

Ymn (θ, ϕ) = Pn|m| (cos θ) ej

and they satisfy the orthogonality relation

2π π

Ymn (θ, ϕ) Ym n (θ, ϕ) sin θ dθ dϕ = 2πδm,−m δnn .

00

The spherical wave functions can be expressed as integrals over plane waves [26, 70, 215]

umn1 (kr) =

 

1

 

2π π Ymn (β, α) ejk(β,α)·r sin β dβ dα

(B.1)

 

4πjn

 

 

 

0 0

 

and

 

 

 

 

 

 

umn3 (kr) =

 

1

2π π2 jYmn (β, α) ejk(β,α)·r sin β dβ dα,

(B.2)

2πjn

 

0

0

 

where (k, β, α) are the spherical coordinates of the wave vector k. We note that (B.2) is valid for z > 0 since only then the integral converges.

The spherical wave expansion of the plane wave exp(jk ·r) is of significant importance in electromagnetic scattering and is given by [215]

∞ n

 

 

P (k, β, α, r) = ejk(β,α)·r =

2jnY−mn (β, α) umn1 (kr).

(B.3)

n=0 m=−n

 

 

The quasi-plane waves have been introduced by Devaney [46], and for z > 0, they are defined as

2π π j

Q(k, β, α, r) = 2 (β, α, β , α )ejk (β ,α )·r sin β dβ dα ,

00

where

 

1

∞ n

(β, α, β , α ) =

Y−mn (β, α) Ymn (β , α ) .

 

 

2π n=0 m=−n

If β and β belong to [0, π], the expression of simplifies to

(β, α, β , α ) = δ(cos β − cos β)δ(α − α).

As in (B.3), the expansion of quasi-plane waves in terms of radiating spherical wave functions is given by

∞ n

 

Q(k, β, α, r) = jnY−mn (β, α) umn3 (kr).

(B.4)

n=0 m=−n

 


B.1 Scalar Wave Functions

263

The function allows to formally analytically continue a function f (β, α), defined for real β, onto the complex values of β. In particular we see that

2π π

f (β, α) =

f (β , α ) (β, α, β , α ) sin β dβ dα ,

0

0

where β can assume all values lying on the contour [0, π2 j), and therefore

2π π2 j

f (β, α)ejk(β,α)·r sin β dβ dα

00

2π π

=

f (β, α)Q(k, β, α, r) sin β dβ dα,

(B.5)

00

where we have used the definition of Q. In view of (B.2) and (B.5), we deduce that the integral representation for the radiating spherical wave functions is given by

u3

(kr) =

1

2π π Y (β, α) Q(k, β, α, r) sin β dβ dα.

(B.6)

 

mn

 

2πjn

mn

 

 

 

0 0

 

In the far-field region, a plane wave can be expressed as a superposition of incoming and outgoing spherical waves. To derive this expression, we start with the series representation (B.3) written as

∞ n

2jnjn(kr)Y−mn (β, α) Ymn(θ, ϕ),

P (k, β, α, r) = ejk(β,α)·r =

n=0 m=−n

 

use the asymptotic behavior of the spherical Bessel functions for large values of the argument

 

1

 

 

 

 

 

 

 

 

 

jn (kr) =

 

sin

kr −

 

 

 

 

 

 

 

kr

2

 

 

 

 

 

 

=

1

 

j(kr

2 )

e

j(kr

2

)

 

2jkr

e

 

 

 

 

 

 

, kr → ∞

take into account the completeness relations for spherical harmonics,

δ (er − ek ) = δ(ϕ − α)δ(cos θ − cos β)

 

1

n

 

 

=

Y−mn (β, α) Ymn (θ, ϕ) ,

 

 

2π n=0 m=−n

 

 

δ (er + ek ) = δ [(π + ϕ) − α] δ [cos (π − θ) cos β]

 

1

n

 

 

 

 

n

 

=

 

 

(1)

 

Y−mn (β, α) Ymn (θ, ϕ) ,

2π

 

 

 

 

n=0 m=−n