Файл: Doicu A., Wriedt T., Eremin Y.A. Light scattering by systems of particles (OS 124, Springer, 2006.pdf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 28.06.2024

Просмотров: 833

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

264 B Wave Functions

where er and ek are the unit vectors in the directions of r and k, respectively, and obtain

ejk·r =

2π

δ (er

ek ) ejkr

δ (er + ek ) ejkr

, kr

→ ∞

.

 

 

jkr

 

 

 

 

The vector spherical harmonics are defined as [175, 228, 229]

m

 

(θ, ϕ) =

1

 

j|m|(θ)e

θ

τ |m|(θ)e

ej,

 

 

 

 

 

mn

 

2n(n + 1)

n

 

 

n

 

ϕ

n

 

(θ, ϕ) =

1

 

τ |m|(θ)e

 

+ j|m|e

ej,

 

 

 

 

 

 

mn

 

2n(n + 1)

n

θ

 

 

n

ϕ

 

(B.7)

(B.8)

(B.9)

where (er , eθ , eϕ) are the spherical unit vectors of the position vector r, and we have er × mmn = nmn and er × nmn = −mmn. We omit the third vector spherical harmonics

1

pmn(θ, ϕ) = 2n(n + 1) Ymn(θ, ϕ)er

since it will be not encountered in our analysis. The orthogonality relations for vector spherical harmonics are

2π π

0

0

mmn(θ, ϕ) · mm n (θ, ϕ) sin θ dθ dϕ

 

=

2π π

nmn(θ, ϕ) · nm n (θ, ϕ) sin θ dθ dϕ = πδm,−m δnn ,

(B.10)

0

0

and

2π π

 

 

 

 

 

 

mmn(θ, ϕ) · nm n (θ, ϕ) sin θdθ dϕ = 0 .

(B.11)

 

 

0

0

 

The system of vector spherical harmonics is orthogonal and complete in L2tan() (the space of square integrable tangential fields defined on the unit sphere ) and in terms of the scalar product in L2tan() we have

2π π

0

0

mmn(θ, ϕ) · mm n (θ, ϕ) sin θ dθ dϕ

 

2π π

 

 

 

 

 

 

 

=

 

nmn(θ, ϕ)

·

nm

 

n

 

(θ, ϕ) sin θ dθ dϕ = πδmm δnn

(B.12)

0

 

0

 

 

 

 

and

2π π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mmn(θ, ϕ) · nm n (θ, ϕ) sin θ dθ dϕ = 0.

(B.13)

00


B.2 Vector Wave Functions

265

We define the vector spherical harmonics of leftand right-handed type as

1

lmn(θ, ϕ) = [mmn(θ, ϕ) + jnmn(θ, ϕ)] 2

 

 

j

 

m

 

m

 

=

 

 

|

 

|(θ) + τ |

 

|(θ)

 

 

 

 

 

2 n(n + 1)

n

n

 

and

1

rmn(θ, ϕ) = [mmn(θ, ϕ) jnmn(θ, ϕ)] 2

 

 

j

 

m

 

 

 

m

 

=

 

 

|

 

|(θ)

τ |

 

|(θ)

 

 

 

 

 

2 n(n + 1)

n

 

n

 

(B.14)

(eθ + jeϕ)ej

(B.15)

(eθ jeϕ)ej,

respectively, and it is straightforward to verify the orthogonality relations

2π π

0

0

lmn(θ, ϕ) · lm n (θ, ϕ) sin θ dθ dϕ

 

2π π

 

 

 

 

 

 

=

 

rmn(θ, ϕ)

·

rm

 

n

(θ, ϕ) sin θ dθ dϕ = πδmm δnn

(B.16)

0

 

0

 

 

 

 

and

2π π

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

lmn(θ, ϕ) · rm n (θ, ϕ) sin θ dθ dϕ = 0.

(B.17)

00

Since lmn and rmn are linear combinations of mmn and nmn, we deduce that the system of vector spherical harmonics of leftand right-handed type is also orthogonal and complete in L2tan().

B.2 Vector Wave Functions

The independent solutions to the vector wave equations can be constructed as [215]

M mn1,3 (kr) =

 

1

umn1,3 (kr) × r,

 

 

2n(n + 1)

N mn1,3 (kr) =

1

× M mn1,3 (kr),

 

k

where n = 1, 2, ..., and m = −n, ..., n. The explicit expressions of the vector spherical wave functions are given by


266 B Wave Functions

M 1,3

(kr) =

1

 

z1,3(kr) j|m| (θ) e

θ

τ |m| (θ) e

ej,

 

 

 

 

mn

 

 

2n(n + 1) n

 

 

 

 

n

 

 

n

 

 

ϕ

N 1,3

(kr) =

1

 

!n(n + 1)

zn1,3(kr)

P |m|(cos θ)e

 

 

 

 

 

 

 

 

 

mn

 

 

2n(n + 1)

 

 

 

 

kr

n

 

r

 

 

 

 

 

 

krz1,3(kr)

 

 

 

 

 

 

 

 

 

+

 

 

 

 

+

 

n

τ |m|(θ)e

θ

+ j|m|(θ)e

 

ej,

 

 

 

 

 

 

 

 

 

 

kr

n

 

 

n

 

ϕ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

krzn1,3(kr)

=

d

krzn1,3(kr) .

 

 

 

 

 

 

 

 

 

 

 

 

 

d (kr)

 

 

 

The superscript ‘1’ stands for the regular vector spherical wave functions while the superscript ‘3’ stands for the radiating vector spherical wave functions. It

is useful to note that for n = m = 0, we have M 100,3 = N 100,3 = 0. M 1mn, N 1mn is an entire solution to the Maxwell equations and M 3mn, N 3mn is a radiating

solution to the Maxwell equations in R3 − {0}.

The vector spherical wave functions can be expressed in terms of vector spherical harmonics as follows:

M mn1,3 (kr) = zn1,3(kr)mmn(θ, ϕ),

 

 

 

 

 

 

 

 

 

 

(kr)

 

 

n(n + 1)

 

z1,3(kr)

 

krz1,3

N mn1,3 (kr) =

 

 

 

n

Ymn (θ, ϕ) er +

n

 

nmn(θ, ϕ),

 

 

kr

 

 

2

 

 

 

kr

In the far-field region, the asymptotic behavior of the spherical Hankel functions for large value of the argument yields the following representations for the radiating vector spherical wave functions [40]:

3

ejkr !

n+1

 

 

 

1

 

"

M mn(kr) =

 

 

(j)

 

mmn(θ, ϕ) + O

 

 

 

 

, r → ∞,

kr

 

 

 

r

3

ejkr !

 

n+1

 

 

1

"

N mn(kr) =

 

 

j (j)

 

 

nmn(θ, ϕ) + O

 

 

 

 

, r → ∞.

kr

 

 

 

 

 

r

The orthogonality relations on a sphere Sc, of radius R, are

[er × M mn(kr)] · [er × M m n (kr)] dS(r) = πR2zn2 (kR)δm,−m δnn ,

Sc

 

[er

×

N mn(kr)]

·

[er

×

N m n (kr)] dS(r) = πR2

!

[kRzn(kR)]

"2

 

kR

Sc

 

 

 

 

 

×δm,−m δnn ,


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B.2 Vector Wave Functions

267

and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[er

×

M mn(kr)]

·

[er

×

N m n (kr)] dS(r) = 0,

 

Sc

 

 

 

 

 

 

 

and we also have

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[er

×

M mn(kr)]

·

N m n (kr)dS (r)

 

 

Sc

 

 

 

 

 

 

 

 

=

 

 

 

[er

×

N mn(kr)]

·

M m n (kr)dS (r)

 

 

 

Sc

 

 

 

 

 

 

 

 

 

 

 

= πR2zn(kR)

[kRzn(kR)]

δm,−m δnn

(B.18)

 

 

 

 

kR

 

 

 

and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

×

M mn(kr)]

·

M m n (kr)dS (r)

 

 

Sc

 

 

 

[er

 

 

 

 

 

 

 

 

 

×

 

 

 

 

 

 

 

 

·

 

 

 

 

 

=

Sc

[er

N mn(kr)]

N m n (kr)dS (r) = 0.

(B.19)

 

 

 

 

The spherical vector wave expansion of the dyad gI is of basic importance in our analysis and is given by [175, 228, 229]

g(k, r, r )

I

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M 3

 

(kr )M 1

(kr) + N 3

 

(kr

 

 

 

 

 

mn

mn

 

mn

 

 

 

 

 

 

 

 

 

 

 

 

jk

n

 

+Irrotational terms ,

r < r

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

π n=1 m= n

 

M 1

 

(kr )M 3

(kr) + N 1

 

(kr

 

 

 

 

mn

mn

 

mn

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+Irrotational terms ,

r > r

 

 

 

 

 

 

 

 

)N 1mn(kr)

(B.20)

)N 3mn(kr)

Using the calculation rules for dyadic functions and the identity ag = a · gI, we find the following simple but useful expansions

×

[a(r )g(k, r, r )]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a(r )

·

M

3

 

 

(kr ) N 1

(kr)

 

 

 

 

 

 

 

 

 

 

−mn

 

mn

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

3

 

 

 

1

 

 

 

 

2

 

+ a(r ) N mn(kr ) M mn(kr) , r < r

jk

 

 

 

 

 

 

·

 

 

 

 

 

 

 

=

 

 

 

 

 

 

 

 

 

 

 

 

(B.21)

 

 

 

 

 

 

 

 

 

 

 

 

π n=1 m= n

 

a(r )

·

M

1

 

 

(kr ) N 3

(kr)

 

 

 

 

 

 

 

 

mn

 

mn

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+ a(r )

 

N

1

 

(kr ) M

3

(kr) , r > r

 

 

 

 

 

 

 

·

−mn

mn

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


268 B Wave Functions

and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

× ×

[a(r )g(k, r, r )]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a(r )

 

 

 

3

 

 

(kr ) M 1

 

(kr)

 

 

 

 

 

 

 

·

M

 

 

 

 

 

 

 

 

 

 

 

 

 

 

−mn

 

mn

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

3

 

 

1

 

 

 

 

3

 

 

 

+ a(r ) N mn(kr ) N mn(kr) , r < r

 

jk

 

 

 

 

 

 

 

 

 

·

 

 

 

 

 

 

 

=

 

 

 

 

 

 

 

 

 

 

 

 

(B.22)

 

 

 

 

 

 

 

 

 

 

 

 

π n=1 m= n

 

a(r )

·

M

1

 

 

(kr ) M 3

 

(kr)

 

 

 

 

 

 

 

 

 

mn

 

mn

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+ a(r )

 

N

1

 

(kr ) N

3

(kr)

, r > r

 

 

 

 

 

 

 

·

−mn

mn

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Relying on these expansions and using the Stratton–Chu representation theorem, orthogonality relations of vector spherical wave functions on arbitrarily closed surfaces can be derived. Let Di be a bounded domain with boundary S and exterior Ds, and let n be the unit normal vector to S directed into Ds. The wave number in the domain Ds is denoted by ks, while the wave number in the domain Di is denoted by ki. For r Di, application of Stratton–Chu representation theorem to the vector fields Es(r) = M 3mn(ksr)

and Hs(r) = j εssN 3mn(ksr) gives

 

 

 

3

 

M 3

 

 

 

3

 

N 3

 

n

×

M

 

−m n

+ n

×

N

 

−m n

dS = 0,

S

 

mn ·

N 3

 

 

mn ·

M 3

 

 

 

 

 

−m n

 

 

 

 

 

−m n

 

(B.23)

while for r Ds, yields

jks2

 

 

3

 

M 1

 

 

 

3

 

N 1

 

 

 

 

n

×

M

 

 

−m n

+ n

×

N

 

 

−m n

dS

 

π

 

 

 

S

 

mn

·

N 1

 

 

mn ·

M 1

 

 

 

 

 

 

 

 

−m n

 

 

 

 

 

−m n

 

 

0

 

 

 

 

 

 

 

 

 

 

 

(B.24)

=

 

δmm δnn

.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Similarly, for r Ds, vector fields Ei(r) =

n × M 1mn

S

the Stratton–Chu representation theorem applied to the

M 1

(k r) and H

(r) =

j

ε

N 1

(k

r) leads to

mn

i

i

 

 

 

i

i

mn

i

 

M

1

 

 

N 1

 

N 1

 

 

−m n

+ n

×

 

 

 

−m n

 

dS = 0.

· N 1 m n

 

mn

·

 

M 1 m n

 

 

(B.25) The regular and radiating spherical vector wave functions can be expressed as integrals over vector spherical harmonics [26]

1

1

2π π

(j) mmn (β, α) e

jk(β,α)

r

sin β dβ dα,

M mn(kr) =

 

 

 

 

 

·

 

4πjn+1

0

0

 

 

 

 

 

 

 

 

 

 

 

 

 

(B.26)

1

1

2π π

nmn (β, α) e

jk(β,α)

r

sin β dβ dα,

N mn(kr) =

 

 

 

 

·

 

4πjn+1

0

0

 

 

 

 

 

 

 

 

 

 

 

 

(B.27)