Файл: Doicu A., Wriedt T., Eremin Y.A. Light scattering by systems of particles (OS 124, Springer, 2006.pdf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 28.06.2024

Просмотров: 832

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

B.2 Vector Wave Functions

269

and

3

1

2π π2 j

 

 

jk(β,α)

r

 

M mn(kr) =

 

 

 

(j) mmn (β, α) e

 

 

·

 

sin β dβ dα,

2πjn+1

0

0

 

 

 

 

 

 

 

 

 

 

 

 

 

(B.28)

3

1

2π π2 j

 

jk(β,α)

r

 

 

 

N mn(kr) =

 

 

 

nmn (β, α) e

 

·

 

sin β dβ dα

2πjn+1

0

0

 

 

 

 

 

 

 

 

 

 

 

 

(B.29)

for z > 0, respectively.

The above system of vector functions is also known as the system of localized vector spherical wave functions. Another system of vector functions which is suitable for analyzing axisymmetric particles with extreme geometries is the system of distributed vector spherical wave functions [49]. For an axisymmetric particle with the axis of rotation along the z-axis, the distributed vector spherical wave functions are defined as

1,3

1,3

[k(r − znez )] ,

 

Mmn(kr) = M m,|m|+l

 

1,3

1,3

[k(r − znez )] ,

(B.30)

Nmn(kr) = N m,|m|+l

where {zn}n=1 is a dense set of points on the z-axis (Fig. B.1), ez is the unit vector in the direction of the z-axis, n = 1, 2, ..., m Z, and l = 1 if m = 0 and l = 0, if m = 0. M1mn, Nmn1 is an entire solution to the Maxwell equations and M3mn, Nmn3 is a radiating solution to the Maxwell equations in R3 − {znez }. In the case of prolate scatterers, the distribution of the poles on the axis of rotation adequately describes the particle geometry. In contrast, it is clear from physical considerations that this arrangement is not suitable for oblate scatterers. In this case, the procedure of analytic continuation of the vector fields onto the complex plane along the source coordinate zn can be used

 

z

 

 

 

 

r-znez

M

 

zn

 

 

r

y

 

O

 

 

 

x

z2

Γ (support of DS)

 

z1

 

 

Fig. B.1. Sources distributed on the z-axis



270 B Wave Functions

 

 

ρ

η

 

 

 

 

L

 

Σ

 

 

 

 

 

O

z, Re z

 

 

 

L

 

 

z

Im z

 

 

 

Fig. B.2. Illustration of the complex plane. L is the generatrix of the surface and L is the image of L in the complex plane

(Fig. B.2). The complex plane Σ3 = {z3 = (Re z3, Im z3)/Re z3, Im z3 R} is the dual of the azimuthal plane ϕ = const., Σ = = (ρ, z)/ρ ≥ 0, z R}, and is defined by taking the real axis Re z3 along the z-axis. The vector spherical wave functions can be expressed in terms of the coordinates of the source point z3 Σ3 and the field point η Σ as

M 1,3

 

(kr) =

 

 

 

 

1

 

 

 

z1,3

(kR) j|m|

θ sin(θ

θ)e

 

 

 

 

 

 

 

 

 

 

 

r

mn

 

 

 

2n(n + 1) n

 

 

 

 

 

 

n

 

3

 

 

 

 

3

 

 

 

 

+ cos(θ

 

θ)e

 

τ |m| θ e

 

ej

 

 

 

 

 

(B.31)

 

 

 

 

 

 

 

 

3

θ

 

n

 

3

ϕ

 

 

 

 

 

 

 

 

 

and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N 1,3

(kr) =

 

 

 

 

1

 

 

 

!n(n + 1)

zn1,3(kR)

P

|m|(cos θ)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mn

 

 

2n(n + 1)

 

 

 

 

 

 

 

kR

 

 

n

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

kRz1,3(kR)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

× cos(θ − θ3)er sin(θ − θ3)eθ

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

kR

 

 

 

 

 

 

 

 

 

τ |m| θ sin(θ

 

θ)e

r

+ cos(θ

 

θ)e

 

 

 

 

 

 

 

 

×

 

n

 

3

 

 

 

 

3

 

 

 

 

 

3

θ

 

 

 

 

 

 

 

 

+ j|m|

θ e

ej,

 

 

 

 

 

 

 

 

 

 

 

 

(B.32)

 

 

 

 

 

 

 

n

 

3

ϕ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R2 = ρ2 + (z

z)2

,

sin θ =

 

ρ

 

and

 

cos θ =

z − z3

.

 

 

R

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

3

 

 

 

 

 

 

3

 

R

 

 

 

 

B.3 Rotations

We consider two coordinate systems Oxyz and Ox1y1z1 having the same origin. The coordinate system Ox1y1z1 is obtained by rotating the coordinate


B.3 Rotations

271

 

z

θ

M

 

 

 

 

 

 

 

β z1

 

 

 

θ1 r

 

 

 

 

y1

 

O

 

y

 

 

 

x

α

γ

x1

 

 

Fig. B.3. Coordinate rotations

system Oxyz thought the Euler angles (α, β, γ) as shown in Fig. B.3. With (θ, ϕ) and (θ1, ϕ1) being the spherical angles of the same position vector r in the coordinate systems Oxyz and Ox1y1z1, the addition theorem for spherical wave functions under coordinate rotations is [58, 213, 239]

 

n

umn1,3 (kr, θ, ϕ) =

Dmmn (α, β, γ)um1,3n(kr, θ1, ϕ1),

 

m =−n

where the Wigner D-functions are defined as [262]

 

n

 

 

 

 

 

m+m

jmα n

 

jm γ

.

 

Dmm (α, β, γ) = (1)

 

e

 

 

dmm (β)e

 

The functions d are given by

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

n

 

 

 

 

 

 

dmm (β) = mm dmm (β),

 

 

 

 

where dn

are the Wigner d-functions and

 

 

 

 

 

 

mm

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1,

 

 

 

 

m

0 ,

m

0

 

 

 

(

 

 

m

,

 

m

0 , m

 

 

 

 

1)

 

< 0

 

 

mm =

(

1)

m

,

 

 

 

 

m

 

0

 

 

 

 

 

m < 0 ,

 

 

 

 

m+m

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

, m < 0 , m < 0,

 

 

(1)

 

 

 

 

(B.33)

(B.34)

(B.35)

(B.36)

with the property mm = m m. The expression of Wigner d-functions for positive and negative values of the indices m and m is given by

dn

(β) =

 

 

(n + m )!(n

− m )!

 

(

1)n−m −σ Cn−m −σ Cσ

 

 

(n + m)!(n

mm

 

 

 

m)!

σ

 

n+m n−m

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cos

β m+m +2σ

sin

β 2n−m−m −2σ

 

 

×

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

2

 


272 B Wave Functions

and note that the above equation is valid for β < 0, if

cos

 

 

β

 

=

 

1 + cos β

 

 

 

sin

β

 

=

 

1 cos β

 

 

 

 

 

,

 

 

 

 

 

2

 

 

 

 

2

 

 

 

2

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

and for β > π, if

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cos

 

β

 

 

 

 

1 + cos β

 

sin

 

β

 

 

 

 

1 cos β

 

 

=

 

 

 

,

=

 

.

 

2

 

 

 

2

 

 

 

 

2

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Wigner d-functions are real and have the following symmetry properties [58]:

dmn −m (β) = (1)n+m dmmn (β + π),

(B.37)

dn mm (β) = (1)n+mdmmn (β + π),

(B.38)

dn m−m (β) = (1)m+m dmmn (β),

(B.39)

dmmn (β) = (1)m+m dmn m(β),

(B.40)

and

 

dmmn (−β) = (1)m+m dmmn (β) = dmn m(β).

(B.41)

Taking into account the above symmetry relations, we can express the d-

functions in terms of the d-functions with positive values of the indices m and m

dn (β) =

mm

dmmn

(β) ,

 

 

 

m ≥ 0 ,

m ≥ 0,

 

 

 

 

n n

 

 

 

 

 

 

 

 

 

 

(

1) dm

 

 

(β + π) ,

m

0 ,

m < 0,

 

m

 

 

(

 

 

(β + π) ,

 

 

m

 

(B.42)

 

1)ndn

 

 

m < 0 ,

0,

 

 

−mm

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d−m−m (β),

 

m < 0 ,

m < 0.

The orthogonality property of the Wigner d-functions is similar to that of the associated Legendre functions and is given by

π

n

n

2

 

 

 

dmm (β)dmm (β) sin βdβ =

 

δnn .

(B.43)

0

2n + 1

The Wigner d-functions are related to the generalized spherical functions Pmmn by the relation [78]

dn

(β) = jm −mP n

(cos β) .

(B.44)

mm

mm

 

 

The generalized spherical functions are complex and have the following symmetry properties: