ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 29.06.2024
Просмотров: 122
Скачиваний: 0
Торсионные движители
Новые представления о полях и силах инерции, изложенные в работе [13], позволили увидеть их связь с торсионными полями и предсказать существование в природе нового класса систем отсчета, которые были названы [13] ускоренными локально лоренцовыми системами отсчета второго рода. В отличие от ускоренных локально лоренцовых систем первого рода, введенных А.Эйнштейном, новые системы образуются в том случае, когда на центр масс изолированной системы действуют скомпенсированные силы инерции.
Простым примером ускоренной локально лоренцовой системы отсчета является система, связанная с центром масс вращающегося гироскопа. Действительно, на центр масс свободного вращающегося гироскопа действуют скомпенсированные центробежные силы инерции. Поэтому центр масс такого гироскопа покоится или движется прямолинейно и равномерно относительно инерциальной системы наблюдения. Если каким-либо способом нарушить равновесие сил инерции в гироскопе, то центр масс гироскопа будет двигаться ускоренно под действием внутренних нескомпенсированных сил.
Этот вывод не противоречит известной теореме о сохранении импульса центра масс изолированной механической системы. Согласно этой теореме, внутренние силы изолированной системы не могут изменить импульса ее центра масс, причем при доказательстве теоремы использованы следующие условия :
1) внутренние силы удовлетворяют третьему закону Ньютона;
2) внутренними силами являются все те силы, которые действуют во внутреннем объеме, ограниченном стенками изолированной системы.
Большинство сил классической механики удовлетворяют первому условию и могут быть разделены на внешние и внутренние согласно второму. Однако в механике существуют силы, которые не удовлетворяют третьему закону Ньютоня. Таковыми, как известно, являются силы инерции, поскольку нельзя сказать, со стороны каких тел приложены эти силы. Более того, силы инерции не подпадают под второе условие, поскольку они являются одновременно как внутренними. так и внешними для изолированной (в определенном выше смысле) механической системы.
Следовательно, движение механических систем под действием внутренних нескомпенсированных сил инерции не противоречит теореме о сохранении импульса центра масс изолированной системы механики Ньютона, поскольку силы инерции не удовлетворяют условиям, при которых доказана эта теорема
В качестве примера механической системы, центр масс которой движется под действием нескомпенсированных сил инерции, предлагается устройство, которое демонстрирует связь между поступательной и вращательными силами инерции и которое можно назвать четырехмерным гироскопом. Оно состоит из центральной массы М и двух масс т, вращающихся синхронно навстречу друг другу вокруг оси, закрепленной на центральной массе М (см.рис.2).
Если в некоторый момент времени сообщить этой системе механическую энергию (например, завращав массы т), то она придет в движение, и мы имеем следующие уравнения движения [13]:
(1)
, (2)
где введены обозначения
.
Рассматриваемая механическая система названа четырехмерным гироскопом потому, что в уравнении движения (1) вращение происходит по пространственному углу ф и по пространственно-временному углу , связанным с поступательным ускорением системы соотношением , , где с —скорость света.
Из рис.2 видно, что система отсчета, связанная с центром масс четырехмерного гироскопа, оказывается ускоренной локально лоренцовой системой отсчета второго рода. В этой системе нарушить равновесие сил инерции можно двумя способами:
а) либо воздействуя на нее внешней силой Fe (задача взаимодействия);
б) воздействуя на ось вращения малых грузов внутренним моментом М0 (задача самодействия ).
Четырехмерный гироскоп с самодействием впервые на практике, по-видимому, был осуществлен российским инженером Владимиром Николаевичем Толчиным [48] и был назван им инерциоидом. Работая главным конструктором Пермского машиностроительного завода, В.Н.Толчин изготовил инерциоиды различных типов, ряд характеристик которых приведены в его книге [48]. Конструктивно инерциоид Толчина выполнен так, что для управления скоростью его центра масс имеется устройство, называемое мотор-тормоз. Назначение этого устройства состоит в том, чтобы осуществлять самодействие инерциоида в секторах 330° — 360° и 160° — 180°, при этом в секторе 330° — 360° происходило увеличение скорости центра масс от 0 до величины порядка 10 см/с, а в секторе 160° — 180° уменьшение скорости центра масс с 10 см/с до 0.
Эксперименты, проделанные В.Н.Толчиным, указывают на реальность существования нового класса ускоренных систем отсчета — ускоренных локально лоренцовых систем второго рода. Они носят обнадеживающий характер и позволят в будущем создать движитель принципиально нового типа .
Торсионные технологии производства материалов
Общеизвестно, что при остывании расплава формирование твердой фазы вещества (например, металла) реализуется через два процесса. Ионы в расплаве должны занять места в потенциальных ямах, соответствующих положению узлов кристаллической решетки твердого тела, а спины ионов (атомов) должны быть ориентированы по ребрам решетки так, как это предписывается типом кристаллической решетки. Последнее обстоятельство используется обычно для объяснения диа- , пара- и ферромагнетизма. Невыполнение любого из этих двух условий приводит к тому, что структура твердого вещества оказывается отличной от естественной, предписываемой традиционными законами физики твердого тела.
В результате действия на расплав внешнего торсионного поля (излучения), например, торсионного генератора, будет изменяться только спиновое состояние системы свободных атомов в расплаве. Если на расплав вещества будет действовать изотропное торсионное излучение, то при достаточном времени воздействия и правильно установленных параметрах расплава все атомы расплава перейдут в состояние однонаправленной ориентации спинов. В таком состоянии через спин-торсионные взаимодействия атомы будут испытывать взаимное притяжение. За счет этого взаимного торсионного притяжения расплав, как спиновая система, будет внутренне устойчив. В результате сильное взаимное торсионное притяжение даже при медленном остывании не даст атомам ориентировать свои спины по ребрам кристаллической решетки и решетка не реализуется. Следствием этого будет аморфная структура вещества (металла), структура квазистекла.
С выполнением указанных выше условий при воздействии на расплав торсионного излучения с неизотропной пространственно-частотной структурой, либо произойдет кристаллизация, но с кристаллической решеткой, "наведенной" веществу установленной структурой внешнего торсионного поля, либо возникнут торсионно индуцированные дефекты кристаллической решетки.
Все указанные варианты теоретически предсказанных результатов воздействия торсионного поля на расплав металлов были экспериментально подтверждены в Институте проблем материаловедения АН Украины в работах совместно с МНТЦ ВЕНТ в период 1989-1993 гг.
На рис.3 показан снимок шлифа олова после контрольной плавки (рис.ЗА) и после плавки при действии на расплав торсионным излучением на частоте 8 Гц (рис.ЗВ). Нетрудно видеть, что обработанный в расплаве металл имеет более крупные зерна почти одинаковые по размерам. Структура металла изотропна в объеме. Исследования показали, что зерна не имеют обычной целостной кристаллической решетки, образуя высокодиспергированное состояние [41]. близкое к абсолютной аморфизации.
В других сериях экспериментов с медью [42] наблюдалось изменение структуры зерен (рис.4А,В), а также появление двойников в результате торсионного воздействия на расплав меди (рис.5А,В).
В период с 1994 по 1995 гг. изменение в структуре и физико-химических свойствах металлов было показано на заводских плавильных печах.
Теоретическое предсказание невозможности обычными материалами экранировать торсионные поля было показано на примере торсионных воздействий на расплав металлов в цельнометаллических заземленных печах Таммана. Предсказанный информационный, а не энергетический характер торсионных воздействий был подтвержден в работах, когда структурная перестройка стали в количестве до 200 кг достигалась торсионным генератором, потребляющим 10 мВт электроэнергии.