ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 06.07.2024

Просмотров: 240

Скачиваний: 0

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

1. Загальна характеристика системи кровообігу. Фактори, які забезпечують рух крові по судинах, його спрямованість та безперервність.

2. Автоматія серця. Градієнт автоматії. Дослід Станіуса.

Мініатюра: “Жабяче серце або дослід Станіуса”.

3. Потенціал дії атипових кардіоміоцитів сино-атріального вузла, механізми походження, фізіологічна роль.

4. Провідна система серця. Послідовність і швидкість проведення збудження по серцю.

5. Потенціал дії типових кардіоміоцитів шлуночків, механізми походження, фізіологічна роль. Співвідношення у часі пд одиночного скороченння міокарда.

6. Періоди рефрактерності під час розвитку пд типових кардіоміоцитів, їх значення.

7. Спряження збудження і скорочення в міокарді. Механізми скорочення і розслаблення міокарду.

8. Векторна теорія формування екг. Екг, відведення. Походження зубців, сегментів, інтервалів екг.

9. Серцевий цикл, його фази, їх фізіологічна роль. Показники насосної функції серця і методи їх дослідження.

1. Період напруження (0,08 с):

2. Період вигнання (0,25 с):

10. Роль клапанів серця у гемодинаміці. Тони серця, механізми їх походження фкг, її аналіз.

11. Артеріальний пульс, його походження сфг, її аналіз.

12. Регуляція діяльності серця. Міогенні та місцеві нервові механізми регуляції діяльності серця.

13. Характер і механізми впливів симпатичних нервів на діяльність серця. Роль симпатичних рефлексів в регуляції серцевої діяльності.

14. Характер і механізми впливів парасимпатичних нервів на діяльність серця. Роль парасимпатичних рефлексів в регуляції серцевої діяльності.

15. Гуморальна регуляція діяльності серця. Залежність діяльності серця від зміни йонного складу крові.

17. Значення в’язкості крові для гемодинаміки. Особливості структури та функції різних відділів судинної системи.

Особливості структури та функції різних відділів судинної системи.

18. Лінійна і об’ємна швидкості руху крові у різних ділянках судинного русла. Фактори, що впливають на їх величину.

19. Кров’яний тиск і його зміни у різних відділах судинного русла.

20. Артеріальний тиск, фактори, що визначають його величину. Методи реєстрації артеріального тиску.

21. Кровообіг у капілярах. Механізми обміну рідини між кров’ю і тканинами.

22. Кровоток у венах, вплив на нього гравітації. Фактори, що визначають величину венозного тиску.

23. Тонус артеріол і венул, його значення. Вплив судинно-рухових нервів на тонус судин.

24. Міогенна і гуморальна регуляція тонусу судин. Роль ендотелія судин в регуляції судинного тонусу.

25. Гемодинамічний центр. Рефлекторна регуляція тонусу судин. Пресорні і депресорні рефлекси.

26. Рефлекторна регуляція кровообігу при зміні положення тіла у просторі (ортостатична проба).

27. Регуляція кровообігу при м’язовій роботі.

28. Особливості кровообігу у судинах головного мозку і його регуляція.

29. Особливості кровообігу у судинах серця I його регуляція.

30. Особливості легеневого кровообігу його регуляція.

31. Механізми лімфоутворення. Рух лімфи посудинах.

Фази ПД Т-КМЦ:

1. Фаза швидкої деполяризації; початкова фаза її пов’язана із швидким входом йонів натрію, потім додається вхід йонів кальцію.

2. Фаза швидкої початкової реполяризації – дуже короткочасна. Пов’язана з виходом із Т-КМЦ йонів калію та вхід хлору

3. Фаза повільної реполяризації (плато) під час цієї фази мембранний потенціал Т-КМЦ мало змінюється, оскільки вихід йонів калію зрівноважується входом йонів кальцію.

4. Фаза швидкої реполяризації – пов’язана із швидким виходом із клітин калію – відновлення вихідного рівня мембранного потенціалу.

Таким чином, велика тривалість ПД пов’язана з наявністю фази плато. Вона в свою чергу виникає внаслідок наявності в Т-КМЦ специфічних потенціал-чутливих кальцій-натрієвих каналів. Ці канали відкриваються під час швидкої деполяризації, коли мембранний потенціал зменшується до рівня (30-40 мВ). Ці канали повільно відкриваються, зате довго лишаються відкритими. Через них довго здійснюється вхід в Т-КМЦ йонів кальцію (значно менше – натрію) за градієнтом концентрації.


6. Періоди рефрактерності під час розвитку пд типових кардіоміоцитів, їх значення.

Значення великої тривалості ПД Т-КМЦ стає зрозумілим, якщо співставити його в часі з графіком зміни збудливості Т-КМЦ при збудженні з графіком поодинокого скорочення міокарда:

ПД Т-КМЦ тривалий через наявність фази плато.

Довготривалий ПД є причиною тривалої абсолютної рефрактерної фази (АР) – час протягом якого Т-КМЦ повністю незбудливі.

АР відповідає розвитку латентного періоду поодинокого м’язевого скорочення, періоду укорочення та значної частини періоду розслаблення.

1. Латентний період.

2. Період укорочення.

3. Період розслаблення.

Завдяки такому співвідношенню у часі фаз збудливості та періодів поодинокого скорочення міокарда досягається:

- неможливість виникнення в міокарді тетанічних скорочень; наступний цикл збудження (і скорочення) стає можливим тільки в фазі відносної рефрактерності, коли міокард закінчив своє скорочення і в значній мірі розслабився. Це дуже важливо, так як для виконання насосної функції серцем необхідно, щоб воно наповнилось кров’ю під час розслаблення. Тетанічне скорочення унеможливлювало б нагнітальну функцію серця;

- неможливість патологічної рециркуляції збудження по структурах серця (тривала фаза абсолютної рефрактерності не дає можливості збудженню повернутись туди, де воно було деякий час тому назад).

7. Спряження збудження і скорочення в міокарді. Механізми скорочення і розслаблення міокарду.

Спряження (зв’язок) збудження і скорочення в міокарді принципово проходить так само, як і в скелетних м’язах. Тобто, ПД викликає скорочення таким чином:

ПД поширюється по мембрані Т-КМЦ, в тому числі і по мембрані Т-трубочок  відкриття кальцієвих каналів саркоплазматичного ретикулума (СПР)  вихід йонів кальцію із СПР  підвищення концентрації йонів кальцію в міоплазмі з 10-8 до 10-5 моль/л  дифузія йонів кальцію до скоротливих білків (протофібрил)  взаємодія з регуляторними білками (з тропоніном)  зміна третинної структури тропоніну та тропоміозину  відкриття активних центрів актину  взаємодія активних головок міозину з активними центрами актину  скорочення міокарду.


Необхідно підкреслити, що сила серцевих скорочень (ССС) залежить від кількості актоміозинових містків, які утворюються при скороченні.

Особливостями процесу спряження збудження та скорочення в міокарді є:

- необхідність для виходу йонів кальцію із СПР (кальцієвого залпу) входу йонів кальцію із міжклітинної рідини. Цей вхід проходить під час фази плато ПД;

- наявність кількісного взаємозв’язку між входом кальцію в клітину під час фази плато ПД і його виходу із СПР, а отже, і ССС (регуляторні механізми, наприклад, можуть підвищувати кількість повільних кальцієвих каналів, через які проходить вхід йонів кальцію під час фази плато ПД  підвищення входу кальцію під час фази плато ПД  посилення виходу йонів Сa+ із СПР  підвищення кількості відкритих активних центрів актину  підвищення кількості акто-міозинових містків  посилення ССС).

Стан кальцієвих каналів можуть змінювати лікарі, призначаючи хворим їх блокатори (варапаміл)  зменшення входу йонів кальцію в Т-КМЦ при їх збудженні  зменшення ССС.

Механізми розслаблення міокарду полягає у видаленні із міоплазми йонів кальцію, які надійшли туди під час “кальцієвого залпу”. Цей результат досягається завдяки:

- активації кальцієвих насосів повздовжніх трубочок СПР (із затратами енергії АТФ);

- активації кальцієвих насосів зовнішньої мембрани Т-КМЦ (із затратами енергії АТФ);

- роботі натрій-кальцієвого йонообмінного механізму; цей механізм забезпечує транспорт в протилежному напрямку через зовнішню клітинну мембрану йонів Na+ (в клітину) і йонів Сa+ (з клітини). Йони Na+ входять в клітину за градієнтом концентрації, який створюється натрій-калієвим насосом (працює з затратами енергії АТФ). Спряжений з входом йонів Na+ вихід йонів Сa+ знижує його концентрацію в клітині та сприяє розслабленню міокарда.


8. Векторна теорія формування екг. Екг, відведення. Походження зубців, сегментів, інтервалів екг.

При збудженні та реполяризації серця виникає електричне поле, яке можна зареєструвати на поверхні тіла. При цьому між різними точками тіла створюється різниця потенціалів, яка змінюється у відповідності з коливаннями величини та напрямку цього електричного поля. Крива змін цієї різниці потенціалів в часі називається електрокардіограмою (ЕКГ). Таким чином, ЕКГ відображає збудження серця, а не його скорочення.

Для розуміння генезу ЕКГ необхідно знати наступні факти:

1. Загальне електричне поле серця утворюється в результаті сумації полів чисельних окремих волокон серця;

2. Кожне збуджене волокно є диполем, що містить в собі елементарний дипольний вектор певної величини та напрямку;

3. Інтегральний вектор в кожен момент процесу збудження є результуючою окремих векторів;

4. Величина потенціалу, що вимірюється в точці, яка віддалена від джерела, залежить головним чином від величини інтегрального вектора і від кута між напрямком цього вектора та віссю відведення.

Відведення ЕКГ. Розрізняють біполярні та уніполярні відведення. Для отримання уніполярного відведення накладають активний електрод на яку-небудь точку поверхні тіла і реєструють зміну потенціалу під цим електродом по відношенню до так званого рефрактерного електрода. Можна рахувати, що референтний електрод поміщений в “нульовій точці” диполя, тобто між позитивним та негативним полюсами.

До біполярних відведень відносяться: стандартні відведення Ейнтховена (І, ІІ, ІІІ); грудні відведення за Небом (D,A,I).

До уніполярних відведень відносяться: посилені відведення по Гольденбергу (aVR, aVL, aVF); прекардіальні відведення за Вільсоном (V1 – V6).

Походження зубців, сегментів та інтервалів ЕКГ:

Сегмент – відстань між двома зубцями. Інтервал – сукупність зубця та сегмента.

Зубець Р – відображає виникнення та поширення збудження по передсердях;

Сегмент PQ–в цей час збудження поширюється по провідній системі серця;

Зубець Q – початок збудження шлуночків (деполяризація лівої поверхні міжшлуночкової перегородки);


Зубець Rпоширення збудження через стінку шлуночків від ендокарда до епікарда;

Зубець S – кінець збудження шлуночків (деполяризація правого шлуночка в області основи легеневого стовбура).

Поширення збудження по шлуночках (комплекс QRS) співпадає з реполяризацією передсердь;

Зубець Т – відображає реполяризацію шлуночків.

9. Серцевий цикл, його фази, їх фізіологічна роль. Показники насосної функції серця і методи їх дослідження.

Серце в системі кровообігу виконує функцію насоса. Його будова повністю пристосована для виконання функцій насоса:

СЕРЦЕ (насос)

ШЛУНОЧКИ

ПЕРЕДСЕРДЯ

КЛАПАНИ

Резервуарна функція

Забезпечення одно-стороннього току крові

Насосна

функція

ХОК, який є адекватним потребам організму

Таким чином, насосну функцію виконують, перш за все, шлуночки серця. Головна функція передсердь полягає в акумулюванні (накопиченні) крові при закритих передсердно-шлуночкових клапанах (кровообіг в судинах безупинний!).

Серце як насос працює циклічно – мають місце ритмічне чергування систоли (скорочення) та діастоли (розслаблення) відділів серця. В стані спокою ЧСС = 75 в хвилину, тривалість серцевого циклу (СЦ) складає 0,8 с. Чергування систоли та діастоли різних відділів серця можна представити у вигляді схеми (одна клітинка = 0,1 с):

Загальна пауза – час протягом якого співпадає діастола передсердь та шлуночків.