ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 19.07.2024
Просмотров: 17
Скачиваний: 0
§ 28. Расстояние между двумя точками. Деление отрезка
в данном отношении
Расстояние d между двумя точками M1(x1; у1 ; z1) и M2(x2; y2; z2) в пространстве определяется формулой
Координаты х, у, z точки М, которая делит отрезок , ограниченный точками M1 (х1 , y1 , z1) и M2 (x2 ; y2 ; z2 ), в отношении , определяются по формулам:
, ,
В частности, при = 1 имеем координаты середины данного отрезка:
, ,
726. Даны точки: A (1; —2; — 3), В (2; —3; 0), С (3; 1; —9), D (— 1; 1; — 12). Вычислить расстояние между: 1) А и С; 2) B и D; 3) С и D.
727. Вычислить расстояния от начала координат О до точек: A (4; —2; —4), B (— 4; 12; 6), С (12; —4; 3), D (12; 16; — 15).
728. Доказать, что треугольник с вершинами А (3; — 1; 2), B (0; —4; 2) и С (—3; 2; 1) равнобедренный.
729. Доказать, что треугольник с вершинами А1 (3; — 1; 6), А2 (—1; 7; —2) и А3 (1; —3; 2) прямоугольный.
730. Определить, есть ли тупой угол среди внутренних углов треугольника M1 (4; —1; 4), М2 (0; 7; —4), M3 (3; 1; —2).
731. Доказать, что внутренние углы треугольника М (3; —2; 5), N (— 2; 1; —3), P (5; 1; —1) острые.
732. На оси абсцисс найти точку, расстояние которой от точки А (— 3; 4; 8) равно 12.
733. На оси ординат найти точку, равноудалённую от точек A (1; —3; 7) и В (5; 7; —5).
734. Найти центр С и радиус R шаровой поверхности, которая проходит через точку Р (4; —1; —1) и касается всех трёх координатных плоскостей.
735. Даны вершины треугольника: М1 (3; 2; —5), М2 (1; —4; 3) и M3 (— 3; 0; 1). Найти середины его сторон.
736. Даны вершины треугольника A (2; —1; 4), В (3; 2; —6), С (— 5; 0; 2). Вычислить длину его медианы, проведённой из вершины А.
737. Центр тяжести однородного стержня находится в точке С (1; —1; 5), один из его концов есть точка А (—2; —1; 7). Определить координаты другого конца стержня.
738. Даны две вершины А (2; —3; —5), В (—I; 3; 2) параллелограмма АВСО и точка пересечения его диагоналей Е (4; — 1; 7). Определить две другие вершины этого параллелограмма.
739. Даны три вершины A (3; —4; 7), В (— 5; 3; — 2) и С (1; 2; —3) параллелограмма АВСО. Найти его четвёртую вершину D, противоположную В.
740. Даны три вершины A (3; —1; 2), B (1; 2; —4) и С (—1; 1; 2) параллелограмма АВСD. Найти его четвёртую вершину D.
741. Отрезок прямой, ограниченный точками A (—1; 8; 3) и В (9; — 7; — 2), разделён точками С, О, Е, F на пять равных частей. Найти координаты этих точек.
742. Определить координаты концов отрезка, который точками С (2; 0; 2) и D (5; — 2; 0) разделён на три равные части.
743. Даны вершины треугольника А (1; 2; — 1), В (2; — 1; 3) и С (— 4; 7; 5). Вычислить длину биссектрисы его внутреннего угла при вершине В.
744. Даны вершины треугольника А (1; —1; —3), В (2; 1; —2) и С (— 5; 2; — 6). Вычислить длину биссектрисы его внешнего угла при вершине А.
745. В вершинах тетраэдра А (x1 ; у1 ; z1), В (х2; у2; z2), С (х3; у3; z3), D (х4; у4; z4) сосредоточены равные массы. Найти координаты центра тяжести системы этих масс.
746. В вершинах тетраэдра A1(x1 ; у1 ; z1), A2(х2; у2; z2), А3(х3; у3; z3), А4(х4; у4; z4) сосредоточены массы ml, m2, m3, и т4. Найти координаты центра тяжести системы этих масс.
747. Прямая проходит через две точки М1(—1; 6; 6) и М2(3; — 6; — 2). Найти точки ее пересечения с координатными плоскостями