ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 27.07.2020

Просмотров: 996

Скачиваний: 8

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Чтобы избежать подобного эффекта, можно менять направление следующих один за другим проходов. Получившийся алгоритм иногда называют "шейкер-сортировкой".

Насколько описанные изменения повлияли на эффективность метода? Среднее количество сравнений, хоть и уменьшилось, но остается O(n2), в то время как число обменов не поменялось вообще никак. Среднее(оно же худшее) количество операций остается квадратичным.

Дополнительная память, очевидно, не требуется. Поведение усовершенствованного (но не начального) метода довольно естественное, почти отсортированный массив будет отсортирован намного быстрее случайного. Сортировка пузырьком устойчива, однако шейкер-сортировка утрачивает это качество.

На практике метод пузырька, даже с улучшениями, работает слишком медленно. Поэтому почти не применяется.

Сортировка вставками

Сортировка простыми вставками в чем-то похожа на вышеизложенные методы.

Аналогичным образом делаются проходы по части массива, и аналогичным же образом в его начале "вырастает" отсортированная последовательность...

Однако в сортировке пузырьком или выбором можно было четко заявить, что на i-м шаге элементы a[0]...a[i] стоят на правильных местах и никуда более не переместятся. Здесь же подобное утверждение будет более слабым: последовательность a[0]...a[i] упорядочена. При этом по ходу алгоритма в нее будут вставляться (см. название метода) все новые элементы.

Будем разбирать алгоритм, рассматривая его действия на i-м шаге. Как говорилось выше, последовательность к этому моменту разделена на две части: готовую a[0]...a[i] и неупорядоченную a[i+1]...a[n].

На следующем, (i+1)-м каждом шаге алгоритма берем a[i+1] и вставляем на нужное место в готовую часть массива.

Поиск подходящего места для очередного элемента входной последовательности осуществляется путем последовательных сравнений с элементом, стоящим перед ним.
В зависимости от результата сравнения элемент либо остается на текущем месте(вставка завершена), либо они меняются местами и процесс повторяется.

Таким образом, в процессе вставки мы "просеиваем" элемент x к началу массива, останавливаясь в случае, когда

  1. Hайден элемент, меньший x или

  2. Достигнуто начало последовательности.

Аналогично сортировке выбором, среднее, а также худшее число сравнений и пересылок оцениваются как Theta(n2), дополнительная память при этом не используется.

Хорошим показателем сортировки является весьма естественное поведение: почти отсортированный массив будет досортирован очень быстро. Это, вкупе с устойчивостью алгоритма, делает метод хорошим выбором в соответствующих ситуациях.

Алгоритм можно слегка улучшить. Заметим, что на каждом шаге внутреннего цикла проверяются 2 условия. Можно объединить из в одно, поставив в начало массива специальный сторожевой элемент. Он должен быть заведомо меньше всех остальных элементов массива.


Тогда при j=0 будет заведомо верно a[0] <= x. Цикл остановится на нулевом элементе, что и было целью условия j>=0.

Таким образом, сортировка будет происходить правильным образом, а во внутреннем цикле станет на одно сравнение меньше. С учетом того, что оно производилось Theta(n2) раз, это - реальное преимущество. Однако, отсортированный массив будет не полон, так как из него исчезло первое число. Для окончания сортировки это число следует вернуть назад, а затем вставить в отсортированную последовательность a[1]...a[n].


Функция setmin(T& x) должна быть создана пользователем. Она заменяет x на элемент, заведомо меньший(меньший или равный, если говорить точнее) всех элементов массива.

Сортировка Шелла

Сортировка Шелла является модификацией алгоритма сортировки простыми вставками.

Рассмотрим следующий алгоритм сортировки массива a[0].. a[15].

1. Вначале сортируем простыми вставками каждые 8 групп из 2-х элементов (a[0], a[8[), (a[1], a[9]), ... , (a[7], a[15]).

2. Потом сортируем каждую из четырех групп по 4 элемента (a[0], a[4], a[8], a[12]), ..., (a[3], a[7], a[11], a[15]).

В нулевой группе будут элементы 4, 12, 13, 18, в первой - 3, 5, 8, 9 и т.п.

3. Далее сортируем 2 группы по 8 элементов, начиная с (a[0], a[2], a[4], a[6], a[8], a[10], a[12], a[14]).

4. В конце сортируем вставками все 16 элементов.

Очевидно, лишь последняя сортировка необходима, чтобы расположить все элементы по своим местам. Так зачем нужны остальные ?

Hа самом деле они продвигают элементы максимально близко к соответствующим позициям, так что в последней стадии число перемещений будет весьма невелико. Последовательность и так почти отсортирована. Ускорение подтверждено многочисленными исследованиями и на практике оказывается довольно существенным.

Единственной характеристикой сортировки Шелла является приращение - расстояние между сортируемыми элементами, в зависимости от прохода. В конце приращение всегда равно единице - метод завершается обычной сортировкой вставками, но именно последовательность приращений определяет рост эффективности.

Использованный в примере набор ..., 8, 4, 2, 1 - неплохой выбор, особенно, когда количество элементов - степень двойки. Однако гораздо лучший вариант предложил Р.Седжвик. Его последовательность имеет вид

При использовании таких приращений среднее количество операций: O(n7/6), в худшем случае - порядка O(n4/3).

Обратим внимание на то, что последовательность вычисляется в порядке, противоположном используемому: inc[0] = 1, inc[1] = 5, ... Формула дает сначала меньшие числа, затем все большие и большие, в то время как расстояние между сортируемыми элементами, наоборот, должно уменьшаться. Поэтому массив приращений inc вычисляется перед запуском собственно сортировки до максимального расстояния между элементами, которое будет первым шагом в сортировке Шелла. Потом его значения используются в обратном порядке.

При использовании формулы Седжвика следует остановиться на значении inc[s-1], если 3*inc[s] > size.


Часто вместо вычисления последовательности во время каждого запуска процедуры, ее значения рассчитывают заранее и записывают в таблицу, которой пользуются, выбирая начальное приращение по тому же правилу: начинаем с inc[s-1], если 3*inc[s] > size

Сравнение времени сортировок

Изображенный ниже график иллюстрирует разницу в эффективности изученных алгоритмов.

  • коричневая линия: сортировка пузырьком;

  • синяя линия: шейкер-сортировка;

  • розовая линия: сортировка выбором;

  • желтая линия: сортировка вставками;

  • голубая линия: сортировка вставками со сторожевым элементом;

  • фиолетовая линия: сортировка Шелла.

Логарифмические и линейные алгоритмы

Пирамидальная сортировка

Мы переходим от простых к сложным, но эффективным методам. Пирамидальная сортировка является первым из рассматриваемых методов, быстродействие которых оценивается как O(n log n).

В качестве некоторой прелюдии к основному методу, рассмотрим перевернутую сортировку выбором. Во время прохода, вместо вставки наименьшего элемента в левый конец массива, будем выбирать наибольший элемент, а готовую последовательность строить в правом конце.

Пример действий для массива a[0]... a[7]:

44 55 12 42 94 18 06 67 исходный массив

44 55 12 42 67 18 06 |94 94 <-> 67

44 55 12 42 06 18 |67 94 67 <-> 06

44 18 12 42 06 |55 67 94 55 <-> 18

06 18 12 42 |44 55 67 94 44 <-> 06

06 18 12 |42 44 55 67 94 42 <-> 42

06 12 |18 42 44 55 67 94 18 <-> 12

06 |12 18 42 44 55 67 94 12 <-> 12

Вертикальной чертой отмечена левая граница уже отсортированной(правой) части массива.

Рассмотрим оценку количества операций подробнее.Всего выполняется n шагов, каждый из которых состоит в выборе наибольшего элемента из последовательности a[0]..a[i] и последующем обмене. Выбор происходит последовательным перебором элементов последовательности, поэтому необходимое на него время: O(n). Итак, n шагов по O(n) каждый - это O(n2).

Произведем усовершенствование: построим структуру данных, позволяющую выбирать максимальный элемент последовательности не за O(n), а за O(logn) времени. Тогда общее быстродействие сортировки будет n*O(logn) = O(n log n).

Эта структура также должна позволять быстро вставлять новые элементы (чтобы быстро ее построить из исходного массива) и удалять максимальный элемент (он будет помещаться в уже отсортированную часть массива - его правый конец).

Итак, назовем пирамидой(Heap) бинарное дерево высоты k, в котором

  • все узлы имеют глубину k или k-1 - дерево сбалансированное.

  • при этом уровень k-1 полностью заполнен, а уровень k заполнен слева направо, т.е форма пирамиды имеет приблизительно такой вид:

  • выполняется "свойство пирамиды": каждый элемент меньше, либо равен родителю.

Как хранить пирамиду? Наименее хлопотно - поместить ее в массив.

Соответствие между геометрической структурой пирамиды как дерева и массивом устанавливается по следующей схеме:

  • в a[0] хранится корень дерева

  • левый и правый сыновья элемента a[i] хранятся, соответственнно, в a[2i+1] и a[2i+2]


Таким образом, для массива, хранящего в себе пирамиду, выполняется следующее характеристическое свойство: a[i] >= a[2i+1] и a[i] >= a[2i+2].

Плюсы такого хранения пирамиды очевидны:

  • никаких дополнительных переменных, нужно лишь понимать схему.

  • узлы хранятся от вершины и далее вниз, уровень за уровнем.

  • узлы одного уровня хранятся в массиве слева направо.

Запишем в виде массива пирамиду, изображенную выше.. Слева-направо, сверху-вниз:

94 67 18 44 55 12 06 42.

На рисунке место элемента пирамиды в массиве обозначено цифрой справа-вверху от него.

Восстановить пирамиду из массива как геометрический объект легко - достаточно вспомнить схему хранения и нарисовать, начиная от корня.

Фаза 1 сортировки: построение пирамиды

Hачать построение пирамиды можно с a[k]...a[n], k = [size/2]. Эта часть массива удовлетворяет свойству пирамиды, так как не существует индексов i,j: i = 2i+1 ( или j = 2i+2 )... Просто потому, что такие i,j находятся за границей массива.

Следует заметить, что неправильно говорить о том, что a[k]..a[n] является пирамидой как самостоятельный массив. Это, вообще говоря, не верно: его элементы могут быть любыми. Свойство пирамиды сохраняется лишь в рамках исходного, основного массива a[0]...a[n].

Далее будем расширять часть массива, обладающую столь полезным свойством, добавляя по одному элементу за шаг. Следующий элемент на каждом шаге добавления - тот, который стоит перед уже готовой частью.

Чтобы при добавлении элемента сохранялась пирамидальность, будем использовать следующую процедуру расширения пирамиды a[i+1]..a[n] на элемент a[i] влево:

  1. Смотрим на сыновей слева и справа - в массиве это a[2i+1] и a[2i+2] и выбираем наибольшего из них.

  2. Если этот элемент больше a[i] - меняем его с a[i] местами и идем к шагу 2, имея в виду новое положение a[i] в массиве. Иначе конец процедуры.

Новый элемент "просеивается" сквозь пирамиду.

Учитывая, что высота пирамиды h <= log n, downheap требует O(log n) времени. Полный код процедуры построения пирамиды будет иметь вид:

// вызвать downheap O(n) раз для преобразования массива в пирамиду целиком

for(i=size/2; i >= 0; i--) downHeap(a, i, size-1);

Ниже дана иллюстрация процесса для пирамиды из 8-и элементов:

44 55 12 42 // 94 18 06 67 Справа - часть массива, удовлетворяющая

44 55 12 // 67 94 18 06 42 свойству пирамиды,

44 55 // 18 67 94 12 06 42

44 // 94 18 67 55 12 06 42 остальные элементы добавляются

// 94 67 18 44 55 12 06 42 один за другим, справа налево.

В геометрической интерпретации ключи из начального отрезка a[size/2]...a[n] является листьями в бинарном дереве, как изображено ниже. Один за другим остальные элементы продвигаются на свои места, и так - пока не будет построена вся пирамида.

На рисунках ниже изображен процесс построения. Неготовая часть пирамиды (начало массива) окрашена в белый цвет, удовлетворяющий свойству пирамиды конец массива - в темный.




Фаза 2: собственно сортировка

Итак, задача построения пирамиды из массива успешно решена. Как видно из свойств пирамиды, в корне всегда находится максимальный элемент. Отсюда вытекает алгоритм фазы 2:


  1. Берем верхний элемент пирамиды a[0]...a[n] (первый в массиве) и меняем с последним местами. Теперь "забываем" об этом элементе и далее рассматриваем массив a[0]...a[n-1]. Для превращения его в пирамиду достаточно просеять лишь новый первый элемент.

  2. Повторяем шаг 1, пока обрабатываемая часть массива не уменьшится до одного элемента.

Очевидно, в конец массива каждый раз попадает максимальный элемент из текущей пирамиды, поэтому в правой части постепенно возникает упорядоченная последовательность.

94 67 18 44 55 12 06 42 // иллюстрация 2-й фазы сортировки

67 55 44 06 42 18 12 // 94 во внутреннем представлении пирамиды

55 42 44 06 12 18 // 67 94

44 42 18 06 12 // 55 67 94

42 12 18 06 // 44 55 67 94

18 12 06 // 42 44 55 67 94

12 06 // 18 42 44 55 67 94

06 // 12 18 42 44 55 67 94

Каково быстродействие получившегося алгоритма? Построение пирамиды занимает O(n log n) операций, причем более точная оценка дает даже O(n) за счет того, что реальное время выполнения downheap зависит от высоты уже созданной части пирамиды.

Вторая фаза занимает O(n log n) времени: O(n) раз берется максимум и происходит просеивание бывшего последнего элемента. Плюсом является стабильность метода: среднее число пересылок (n log n)/2, и отклонения от этого значения сравнительно малы.

Пирамидальная сортировка не использует дополнительной памяти.

Метод не является устойчивым: по ходу работы массив так "перетряхивается", что исходный порядок элементов может измениться случайным образом.

Поведение неестественно: частичная упорядоченность массива никак не учитывается.

Быстрая сортировка

"Быстрая сортировка", хоть и была разработана более 40 лет назад, является наиболее широко применяемым и одним их самых эффективных алгоритмов.

Метод основан на подходе "разделяй-и-властвуй". Общая схема такова:

  1. из массива выбирается некоторый опорный элемент a[i],

  2. запускается процедура разделения массива, которая перемещает все ключи, меньшие, либо равные a[i], влево от него, а все ключи, большие, либо равные a[i] - вправо,

  3. теперь массив состоит из двух подмножеств, причем левое меньше, либо равно правого,

  4. для обоих подмассивов: если в подмассиве более двух элементов, рекурсивно запускаем для него ту же процедуру.

В конце получится полностью отсортированная последовательность.

Рассмотрим алгоритм подробнее.

Разделение массива

На входе массив a[0]...a[N] и опорный элемент p, по которому будет производиться разделение.

  1. Введем два указателя: i и j. В начале алгоритма они указывают, соответственно, на левый и правый конец последовательности.

  2. Будем двигать указатель i с шагом в 1 элемент по направлению к концу массива, пока не будет найден элемент a[i] >= p. Затем аналогичным образом начнем двигать указатель j от конца массива к началу, пока не будет найден a[j] <= p.

  3. Далее, если i <= j, меняем a[i] и a[j] местами и продолжаем двигать i,j по тем же правилам...

  4. Повторяем шаг 3, пока i <= j.