ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 27.08.2021
Просмотров: 416
Скачиваний: 2
Такой принцип повышает эффективность работы ферментов, так как снижает случайность в контакте реагирующих веществ с ферментом. Далее приводятся названия ферментов и характеристика катализируемых реакций.
В тех случаях, когда ансамбль ферментов обслуживает единый, многоступенчатый процесс биохимических превращений, его называют метаболоном. Таковы метаболоны гликолиза, биосинтеза ряда аминокислот, цикла дикарбоновых и трикарбоновых кислот и др.
Особенность работы мультиэнзимных комплексов и метаболонов: эстафетная передача промежуточных продуктов реакции от одного компонента каталитической системы к другому без их высвобождения.
Многие ферменты и ферментные комплексы прочно связаны с мембранами клетки или её органоидов (митохондрий, лизосом, микросом и т.д.) и участвуют в активном транспорте веществ через мембраны.
4. МЕХАНИЗМ ДЕЙСТВИЯ ФЕРМЕНТОВ
По образному выражению, нередко употребляемому в биохимической литературе, фермент подходит к субстрату, как ключ к замку. Это знаменитое правило было сформулировано Э. Фишером в 1894 г. исходя из того, что специфичность действия фермента предопределяется строгим соответствием геометрической структуры субстрата и активного центра фермента.
В 50-е годы нашего столетия это статическое представление было заменено гипотезой Д. Кошланда об индуцированном соответствии субстрата и фермента. Сущность ее сводится к тому, что пространственное соответствие структуры субстрата и активного центра фермента создается в момент их взаимодействия друг с другом, что может быть выражено формулой “перчатка - рука”. При этом в субстрате уже деформируются некоторые валентные связи и он, таким образом, подготавливается к дальнейшему каталитическому видоизменению, а в молекуле фермента происходят конформационные перестройки.
|
Обратите внимание на домены А и Б. Домены А и Б участвуют в связывании субстратов и препятствуют проникновению воды (которая бы способствовала гидролизу нуклеотидов, а не переносу фосфатных групп). Связывание субстрата запускает конформационные изменения, которые видны на рис. б. Обратите внимание, что домены сблизились и их конформация изменилась. Домен Б приобрел более упорядоченную вторичную структуру, в нем появились -складчатые элементы. На рис. б видно, что оба домена прикрывают субстрат. |
Рис. 5 Конформационные изменения в аденилаткиназе при связывании синтетического аналога субстратов. а — пространственная структура аденилаткиназы; б— аденилатциклаза, связанная с синтетическим аналогом субстратов.
В настоящее время гипотеза Кошланда получила дальнейшее развитие в гипотезу топохимического соответствия. Сохраняя основные положения гипотезы взаимоиндуцированной настройки субстрата и фермента, она фиксирует внимание на том, что специфичность действия ферментов объясняется в первую очередь узнаванием той части субстрата, которая не изменяется при катализе. Между этой частью субстрата и субстратным центром фермента возникают многочисленные точечные гидрофобные взаимодействия и водородные связи.
ОСНОВНЫЕ ЭТАПЫ ФЕРМЕНТАТИВНОГО КАТАЛИЗА
Любая ферментативная реакция протекает через ряд промежуточных стадий. Различают три основных этапа ферментативного катализа:
1 этап. ОРИЕНТИРОВАННАЯ СОРБЦИЯ СУБСТРАТА НА АКТИВНОМ ЦЕНТРЕ ФЕРМЕНТА С ОБРАЗОВАНИЕМ ОБРАТИМОГО E-S КОМПЛЕКСА (ФЕРМЕНТ-СУБСТРАТНОГО). На этом этапе происходит взаимодействие адсорбционного центра фермента с молекулой субстрата. При этом и субстрат подвергается конформационной перестройке. Все это происходит за счет возникновения слабых типов связей между субстратом и адсорбционным центром фермента. В результате этого молекула субстрата подается на каталитический центр в наиболее удобном для него положении. Этот этап является легко обратимым, потому что здесь участвуют только слабые типы связей.
2 этап. ХИМИЧЕСКИЕ ПРЕВРАЩЕНИЯ МОЛЕКУЛЫ СУБСТРАТА В СОСТАВЕ ФЕРМЕНТ-СУБСТРАТНОГО КОМПЛЕКСА С ОБРАЗОВАНИЕМ КОМПЛЕКСА ФЕРМЕНТА С ХИМИЧЕСКИ ПРЕОБРАЗОВАННЫМ СУБСТРАТОМ. На этом этапе разрываются одни ковалентные связи и возникают новые. Поэтому этот этап протекает значительно медленнее, чем 1-й и 3-й этапы. Именно скорость второго этапа определяет скорость всей ферментативной реакции в целом.
3 этап. ДЕСОРБЦИЯ ГОТОВОГО ПРОДУКТА ИЗ ЕГО КОМПЛЕКСА С ФЕРМЕНТОМ. В результате образования продукта, комплементарность снижается (или исчезает), а после диссоциации продукта фермент возвращается в исходное состояние. Он, как и 2-й этап, тоже необратим. Исключение - обратимые ферментативные реакции.
В общем виде ход ферментативного катализа представлен ниже, где ES* — комплекс между ферментом и субстратом в переходном состоянии, ЕР - комплекс фермента и продукта: Е + S Е S ES* ЕР Е+Р. Энергетический профиль реакции представлен на рисунке 6.
Рис. 6
Активность ферментов – способность в разной степени ускорять скорость реакции.
Кинетика ферментативных реакций
1. ЗАВИСИМОСТЬ СКОРОСТИ ФЕРМЕНТАТИВНОЙ РЕАКЦИИ ОТ КОНЦЕНТРАЦИИ ФЕРМЕНТА ([E]) при постоянной и довольно большой концентрации субстрата ([S]>>[E], [S]=const) имеет такой вид:
Линейность этого графика позволяет выразить его одной цифрой - тангенс угла наклона к оси абсцисс. Этот тангенс представляет собой величину активности фермента. Именно работа (эффективность) каждого фермента количественно характеризуется величиной его активности, то есть величиной скорости ферментативной реакции в расчете на единицу количества фермента. Единицы активности могут быть различными: мкмоль S/мин.мг или мкмоль S/мин.мл сыворотки крови.
МОЛЕКУЛЯРНАЯ АКТИВНОСТЬ - это количество молекул субстрата, которые превращаются одной молекулой фермента за одну минуту при 30оС и прочих оптимальных условиях. Преимущество этой единицы - в том, что можно сравнивать не только активность ферментов из разных источников, но и эффективность разных ферментов. Например, молекулярная активность фермента каталазы составляет 5*106, а карбоангидразы - 36*106.
Из линейности графика следует, что по скорости реакции можно судить о количестве фермента.
КАТАЛ - это количество фермента, которое обеспечивает превращение 1 моля субстрата за 1 секунду.
ЮНИТ - это количество фермента, которое превращает 1 мкмоль субстрата за 1 минуту. 1 Юнит = 16,67 нкатал
ЗАВИСИМОСТЬ СКОРОСТИ ФЕРМЕНТАТИВНОЙ РЕАКЦИИ ОТ КОНЦЕНТРАЦИИ СУБСТРАТА ПРИ [E] = const и [S] >> [E].
Чем выше концентрация субстрата, тем выше скорость реакции. Эта зависимость гиперболическая.
Vmax=k+2.[E]
Таким образом, Vmax - это предел, к которому стремится скорость реакции при бесконечном повышении концентрации субстрата.
Км - это КОНСТАНТА МИХАЭЛИСА. Она численно равна той концентрации субстрата, при которой скорость реакции составляет половину от максимального значения.
Эта кривая описывается уравнением Михаэлиса-Ментен:
ФИЗИЧЕСКИЙ СМЫСЛ Км заключается в том, что она представляет собой константу равновесия между двумя реакциями, приводящими к распаду фермент-субстратного комплекса и той реакцией, которая ведет к образованию этого комплекса.
Поскольку значение k+2 всегда намного ниже, чем k-1, то
Ks - субстратная константа. Характеризует константу равновесия 1-го этапа ферментативной реакции. Следовательно, Км обычно тоже довольно близка к Кs. Следовательно, Км, как и Кs, характеризует сродство субстрата к данному ферменту. Но экспериментально определить k-1 и k+2 очень трудно, поэтому трудно определить и Кs. С помощью Км можно характеризовать сродство данного фермента к данному субстрату. Чем меньше Км, тем больше сродство фермента к данному субстрату, а значит тем больше равновесие первого этапа ферментативной реакции сдвинуто вправо - в сторону образования фермент-субстратного комплекса. Значит, будут созданы наилучшие условия для протекания и второго этапа ферментативного процесса. При таких условиях для достижения эффективного превращения субстрата требуется малая концентрация субстрата. Значит, и Vmax теоретически может быть достигнута при малых количествах субстрата.
Если Км высока, то это означает, что сродство фермента к такому субстрату низкое и реакция при небольших концентрациях субстрата протекает неэффективно.
Свойства ферментов
Будучи белками, ферменты обладают всеми их свойствами. Вместе с тем биокатализаторы характеризуются рядом специфических качеств, тоже вытекающих из их белковой природы. Сюда относятся термолабильность ферментов, зависимость их действия от значения рН среды (рис.7), специфичность и, наконец, подверженность влиянию активаторов и ингибиторов.
|
|
Типичная зависимость скорости ферментативной реакции от температуры |
Зависимость скорости ферментативной реакции от рН |
Рис. 7
Термолабильность ферментов объясняется тем, что температура, с одной стороны, воздействует на белковую часть фермента, приводя при слишком высоких значениях к денатурации белка и снижению каталитической функции, а с другой стороны, оказывает влияние на скорость реакции образования фермент-субстратного комплекса и на все последующие этапы преобразования субстрата, что ведет к усилению катализа.
Зависимость каталитической активности фермента от температуры выражается типичной кривой. До некоторого значения температуры (в среднем до 5О°С) каталитическая активность растет, причем на каждые 10°С примерно в 2 раза повышается скорость преобразования субстрата. В то же время постепенно возрастает количество инактивированного фермента за счет денатурации его белковой части. При температуре выше 50°С денатурация ферментного белка резко усиливается и, хотя скорость реакций преобразования субстрата продолжает расти, активность фермента, выражающаяся количеством превращенного субстрата, падает.
Температура, при которой каталитическая активность фермента максимальна, называется его температурным оптимумом.
Температурный оптимум для различных ферментов неодинаков. В общем для ферментов животного происхождения он лежит между 40 и 50°С, а растительного - между 50 и 60°С. Однако есть ферменты с более высоким температурным оптимумом, например, у папаина (фермент растительного происхождения, ускоряющий гидролиз белка) оптимум находится при 8О°С. В то же время у каталазы (фермент, ускоряющий распад Н2О2 до Н2О и О2) оптимальная температура действия находится между 0 и 10°С, а при более высоких температурах происходит энергичное окисление фермента и его инактивация.
Зависимость активности фермента от значения рН среды была установлена свыше 50 лет назад. Для каждого фермента существует оптимальное значение рН среды, при котором он проявляет максимальную активность. Большинство ферментов имеет максимальную активность в зоне рН поблизости от нейтральной точки. В резко кислой или резко щелочной среде хорошо работают лишь некоторые ферменты.
Переход к большей или меньшей (по сравнению с оптимальной) концентрации водородных ионов сопровождается более или менее равномерным падением активности фермента.
Влияние концентрации водородных ионов на каталитическую активность ферментов состоит в воздействии ее на активный центр.
При разных значениях рН в реакционной среде активный центр может быть слабее или сильнее ионизирован, больше или меньше экранирован соседними с ним фрагментами полипептидной цепи белковой части фермента и т.п. Кроме того, рН среды влияет на степень ионизации субстрата, фермент-субстратного комплекса и продуктов реакции, оказывает большое влияние на состояние фермента, определяя соотношение в нем катионных и анионных центров, что сказывается на третичной структуре белковой молекулы. Последнее обстоятельство заслуживает особого внимания, так как определенная третичная структура белка-фермента необходима для образования фермент-субстратного комплекса.
Специфичность - одно из наиболее выдающихся качеств ферментов – обсуждалась выше.
ИНГИБИТОРЫ ФЕРМЕНТОВ
Действие ферментов можно полностью или частично подавить (ингибировать) определенными химическими веществами - ингибиторами (рис. 8).
По характеру своего действия ингибиторы подразделяются на обратимые и необратимые. В основе такого деления лежит прочность соединения ингибитора с ферментом.
Рис. 8
Обратимые ингибиторы — это соединения, которые нековалентно взаимодействуют с ферментом и могут диссоциировать от фермента.
Обратимое ингибирование может быть конкурентным. Конкурентный ингибитор конкурирует с субстратом за связывание в субстратсвязывающем участке активного центра и связывается с ферментом похожим способом, как и субстрат. Но конкурентный ингибитор, связанный с ферментом, не подвергается ферментативному превращению. Отличительная особенность конкурентного ингибирования состоит в том, что его можно ослабить или полностью устранить, повысив концентрацию субстрата. Многие лекарства являются конкурентными ингибиторами ферментов.
Пример. Сульфамидные препараты, используемые для лечения инфекционных болезней. Сульфаниламиды – это структурные аналоги парааминобензойной кислоты, из которой в клетке микроорганизма синтезируется кофермент (Н4 - фолат), участвующий в биосинтезе нуклеиновых оснований. Нарушение синтеза нуклеиновых кислот приводит к гибели микроорганизмов.
Обратимое ингибирование может быть неконкурентным в отношении субстрата; в этом случае ингибитор не конкурирует с субстратом за одно и то же место в ферменте.
Неконкурентный ингибитор может связаться с ферментом и в присутствии, и в отсутствие субстрата, увеличение концентрации субстрата не препятствует связыванию ингибитора (рис.9). Неконкурентный ингибитор в действительности уменьшает количество активного фермента.
Связывание приводит к изменению конформации фермента и нарушению комплементарности к субстрату. Неконкурентные ингибиторы могут обратимо связываться как со свободным ферментом, так и с комплексом ES. Наиболее важными неконкурентными ингибиторами являются образующиеся в живой клетке промежуточные продукты метаболизма, способные обратимо связываться с определенными участками ферментов (аллостерические центры) и изменять их активность, что является одним из способов регуляции метаболизма.
Необратимые ингибиторы — это соединения, которые могут специфически связывать определенные функционально важные группы активного центра, образуя ковалентные, прочные связи с ферментом. При этом они необратимо, часто ковалентно, связываются с ферментом или фермент - субстратным комплексом и необратимо изменяют нативную конформацию. В основе действия некоторых токсичных веществ лежит ингибирование активности ферментов, например, соединений мышьяка, Hg2+, Pb2+