Файл: Информация и формы ее представления Информационные процессы и технологии.docx
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 07.11.2023
Просмотров: 307
Скачиваний: 1
СОДЕРЖАНИЕ
1.3. ЭВМ как средство обработки информации
1.1 Информация и формы ее представления
1.2 Информационные процессы и технологии
1.3 ЭВМ как средство обработки информации
Структура и принципы функционирования ЭВМ
Основные характеристики вычислительной техники
Перспективы развития вычислительных средств
2.4 Операционная система MS-DOS
Файловая структура логического диска
Раздел 3 Основные принципы программирования
3.1. Этапы подготовки и решения задач на ЭВМ
3.2. Алгоритмы и способы их описания
3.3. Компиляция и интерпретация программ
3.1 Этапы подготовки и решения задач на ЭВМ
3.2 Алгоритмы и способы их описания
3.3. Компиляция и интерпретация программ
Раздел 9 Объектно-ориентированное программирование
Поколение ЭВМ определяется элементной базой (лампы, полупроводники, микросхемы различной степени интеграции), архитектурой и вычислительными возможностями.
Основное назначение больших ЭВМ — выполнение работ, связанных с обработкой и хранением больших объемов информации, проведением сложных расчетов и исследований в ходе решения вычислительных и информационно-логических задач. Такими машинами, как правило, оснащаются вычислительные центры, используемые совместно несколькими организациями. Большие машины составляли основу парка вычислительной техники до середины 70-х годов и успешно эксплуатируются поныне. К ним относятся большинство моделей фирмы IBM (семейства 360,370,390) и их отечественные аналоги ЕС ЭВМ.
В настоящее время высказываются полярные мнения о перспективах развития больших машин. Согласно одному из них, возможности больших машин полностью перекрываются, с одной стороны, супер-ЭВМ, а с другой — мини-ЭВМ и, выработав свой ресурс, этот класс прекратит свое существование. Другая сторона убеждает в необходимости развития универсальных больших и супер-ЭВМ, которые обладают способностью работать одновременно с большим количеством пользователей, создавать гигантские базы данных и обеспечивать эффективную вычислительную работу. К этому следует добавить, что большие ЭВМ обеспечивают устойчивость вычислительного процесса, безопасность информации и низкую стоимость ее обработки.
Производительность больших ЭВМ порой оказывается недостаточной для ряда приложений, например, таких как прогнозирование метеообстановки, ядерная энергетика, оборона и т. д. Эти обстоятельства стимулировали создание сверхбольших или суперЭВМ. Такие машины обладают колоссальным быстродействием в миллиарды операций в секунду, основанном на выполнении параллельных вычислений и использовании многоуровневой иерархической структуры ЗУ(запоминающих устройств), требуют для своего размещения специальных помещений и крайне сложны в эксплуатации. Стоимость отдельной ЭВМ такого класса достигает десятков миллионов долларов. Представители этого класса ЭВМ — компьютеры фирм Cray Research, Control Data Corporation (CDC) и отечественные супер-ЭВМ семейства Эльбрус.
Средние ЭВМпредставляют некоторый интерес в историческом плане. На
определенном этапе развития ЭВМ, когда их номенклатура и, соответственно, возможности были ограниченными, появление средних машин было закономерным. Вычислительные машины этого класса обладают несколько меньшими возможностями, чем большие ЭВМ, но зато им присуща и более низкая стоимость. Они предназначены для использования всюду, где приходится постоянно обрабатывать достаточно большие объемы информации с приемлемыми временными затратами. В настоящее время трудно определить четкую грань между средними ЭВМ и большими с одной стороны и малыми — с другой. К средним могут быть отнесены некоторые модели ЕС ЭВМ, например: ЕС-1036, ЕС-1130, ЕС-1120. За рубежом средние ЭВМ выпускают фирмы IBM (International Business Machinary), DEC (Digital Equipment Corporation), Hewlett Packard, COMPAREX и др.
Малые ЭВМ составляют самый многочисленный и быстроразвивающийся класс ЭВМ. Их популярность объясняется малыми размерами, низкой стоимостью (по сравнению с большими и средними ЭВМ) и универсальными возможностями.
Класс мини-ЭВМ появился в 60-е годы (12-разрядная ЭВМ PD5-5 фирмы DEC). Их появление было обусловлено развитием элементной базы и избыточностью ресурсов больших и средних ЭВМ для ряда приложений. Для мини-ЭВМ характерно представление данных с узким диапазоном значений (машинное слово — 2 байта), использование принципа магистральности в архитектуре и более простое взаимодействие человека и ЭВМ. Такие машины широко применяются для управления сложными видами оборудования, создания систем автоматизированного проектирования и гибких производственных систем. К мини-ЭВМ относятся машины серии PDP (затем VAX) фирмы DEC и их отечественные аналоги — модели семейства малых ЭВМ (СМ ЭВМ).
При переходе от схем с малой и средней степенями интеграции к интегральным микросхемам с большой и сверхбольшой степенями интеграции оказалось возможным создание на одной БИС или СБИС функционально законченного устройства обработки информации, выполняющего функции процессора. Такое устройство принято называть микропроцессором. Изобретение микропроцессора привело к появлению еще одного класса ЭВМ — микро-ЭВМ. Определяющим признаком микро-ЭВМ является наличие одного или нескольких микропроцессоров. Создание микропроцессора не только изменило центральную часть ЭВМ, но и привело к необходимости разработки малогабаритных устройств ее периферийной части. Микро-ЭВМ, благодаря малым размерам
, высокой производительности, повышенной надежности и небольшой стоимости нашли широкое распространение во всех сферах народного хозяйства и оборонного комплекса. С появлением микропроцессоров и микро-ЭВМ становится возможным создание так называемых интеллектуальных терминалов, выполняющих сложные процедуры предварительной обработки информации.
Успехи в развитии микропроцессоров и микро-ЭВМ привели к появлению персональных ЭВМ (ПЭВМ), предназначенных для индивидуального обслуживания пользователя и ориентированных на решение различных задач неспециалистами в области вычислительной техники. Все оборудование персональной ЭВМ размещается в пределах стола.
ПЭВМ, выпускаемые в сотнях тысяч и миллионах экземпляров, вносят коренные изменения в формы использования вычислительных средств, в значительной степени расширяют масштабы их применения. Они широко используются как для поддержки различных видов профессиональной деятельности (инженерной, административной, производственной, литературной, финансовой и др.), так и в быту, например для обучения и досуга.
Персональный компьютер позволяет эффективно выполнять научно-технические и финансово-экономические расчеты, организовывать базы данных, подготавливать и редактировать документы и любые другие тексты, вести делопроизводство, обрабатывать графическую информацию и т. д. Выполнение многих из указанных функций поддерживается многочисленными эффективными универсальными функциональными пакетами программ.
На основе ПЭВМ создаются автоматизированные рабочие места (АРМ) для представителей разных профессий (конструкторов, технологов, административного аппарата и др.).
Рынок персональных и микро-ЭВМ непрерывно расширяется за счет поставок ведущих мировых фирм: IBM, Compaq, Hewlett Packard, Apple (США), Siemens (Германия), ICL (Англия) и др.
Структура и принципы функционирования ЭВМ
Более чем за полвека развития вычислительных средств прогресс в аппаратной реализации ЭВМ и их технических характеристик превзошел все прогнозы, и пока не заметно снижение его темпов. Несмотря на то, что современные ЭВМ внешне не имеют ничего общего с первыми моделями, основополагающие идеи, заложенные в них и связанные с понятием алгоритма, разработанным Аланом Тьюрингом, а также архитектурной реализацией, предложенной Джоном фон Нейманом, пока не претерпели коренных изменений (за исключением систем параллельной обработки информации).
Любая ЭВМ неймановской архитектуры содержит следующие основные устройства:
-
арифметико-логическое устройство (АЛУ); -
устройство управления (УУ) -
запоминающее устройство (ЗУ); -
устройства ввода-вывода (УВВ); -
пульт управления (ПУ).
В современных ЭВМ АЛУ и УУ объединены в общее устройство, называемое центральным процессором. Обобщенная логическая структура ЭВМ представлена на рис. 1.3.
Рисунок 1.3 – Обобщённая логическая структура ЭВМ
Процессор, или микропроцессор, является основным устройством ЭВМ. Он предназначен для выполнения вычислении по хранящейся в запоминающем устройстве программе и обеспечения общего управления ЭВМ. Быстродействие ЭВМ в значительной мере определяется скоростью работы процессора. Для ее увеличения процессор использует собственную намять небольшого объема, именуемую местной или сверхоперативной, что в некоторых случаях исключает необходимость обращения к запоминающему устройству ЭВМ.
Вычислительный процесс должен быть предварительно представлен для ЭВМ в виде программы — последовательности инструкций (команд), записанных в порядке выполнения. В процессе выполнения программы ЭВМ выбирает очередную команду, расшифровывает ее, определяет, какие действия и над какими операндами следует выполнить. Эту функцию осуществляет УУ. Оно же помещает выбранные из ЗУ операнды в АЛУ, где они и обрабатываются. Само АЛУ работает под управлением УУ.
Обрабатываемые данные и выполняемая программа должны находиться в запоминающем устройстве — памяти ЭВМ, куда они вводятся через устройство ввода. Емкость памяти измеряется в величинах, кратных байту. Память представляет собой сложную структуру, построенную по иерархическому принципу, и включает в себя запоминающие устройства различных типов. Функционально она делится на две части: внутреннюю и внешнюю.
Внутренняя, или основная память — это запоминающее устройство, напрямую связанное с процессором и предназначенное для хранения выполняемых программ и данных, непосредственно участвующих в вычислениях. Обращение к внутренней памяти ЭВМ осуществляется с высоким быстродействием, но она имеет ограниченный объем, определяемый системой адресации машины.
Внутренняя память, в свою очередь, делится на оперативную (ОЗУ) и постоянную (ПЗУ) память. Оперативная память, по объему составляющая" большую часть внутренней памяти, служит для приема, хранения и выдачи информации. При выключении питания ЭВМ содержимое оперативной памяти в большинстве случаев теряется. Постоянная память обеспечивает хранение и выдачу информации. В отличие от содержимого оперативной памяти, содержимое постоянной заполняется при изготовлении ЭВМ и не может быть изменено в обычных условиях эксплуатации. В постоянной памяти хранятся часто используемые (универсальные) программы, и данные, к примеру, некоторые программы операционной системы, программы тестирования оборудования ЭВМ и др. При выключении питания содержимое постоянной памяти сохраняется.
Внешняя память (ВЗУ) предназначена для размещения больших объемов информации и обмена ею с оперативной памятью. Для построения внешней памяти используют энергонезависимые носители информации (диски и ленты), которые к тому же являются переносимыми. Емкость этой памяти практически не имеет ограничений, а для обращения к ней требуется больше времени, чем ко внутренней.
Внешние запоминающие устройства конструктивно отделены от центральных устройств ЭВМ (процессора и внутренней памяти), имеют собственное управление и выполняют запросы процессора без его непосредственного вмешательства. В качестве ВЗУ используют накопители на магнитных и оптических дисках, а также накопители на магнитных лентах.