Файл: Второе начало термодинамики.docx

ВУЗ: Не указан

Категория: Реферат

Дисциплина: Не указана

Добавлен: 24.11.2023

Просмотров: 57

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
вопросом классическая термодинамика не задавалась, ибо формировалась в эпоху, когда нестационарный характер Вселенной не обсуждался. В это время единственным укором термодинамике служила дарвиновская теория эволюции. Ведь предполагаемый ею процесс развития растительного и животного мира характеризовался его непрерывным усложнением, нарастанием высоты организации и порядка. Живая природа почему-то стремилась прочь от термодинамического равновесия и хаоса. Налицо была явная нестыковка законов развития живой и неживой природы. После замены модели стационарной вселенной на развивающуюся, в которой ясно просматривалось нарастающее усложнение организации материальных объектов – от элементарных и субэлементарных частиц в первые мгновения после Большого взрыва до звездных и галактических систем, - несоответствие законов стало еще более явным. Ведь если принцип возрастания энтропии столь универсален, как же могли возникнуть такие сложные структуры? Случайным «возмущением» в целом равновесной Вселенной их не объяснить. Стало ясно, что для сохранения непротиворечивости общей картины мира необходимо постулировать наличие у материи в целом не только разрушительной, но и созидательной тенденции. Материя способна осуществлять работу и против термодинамического равновесия, самоорганизовываться и самоусложняться. Для сложных систем всегда существует несколько возможных путей эволюции. Развитие осуществляется через случайный выбор одной из нескольких разрешенных возможностей дальнейшей эволюции. Следовательно, случайность – не досадное недоразумение; она встроена в механизм эволюции. А нынешний путь эволюции системы, возможно, не лучше, чем те, которые были отвергнуты случайным выбором.

Старение – уступка энтропии?


Изредка встречаются люди, к которым неприменимы обычные законы и правила – они могут обходиться без сна, не заражаются опасными инфекциями во время самых страшных эпидемий. Однако нет человека, который неподвластен старению. Все живое стареет, разрушается и погибает. И даже неживая природа: здания, камни, мосты и дороги – тоже постепенно ветшают и приходят в негодность. Очевидно, что старение – это некий обязательный процесс, общий для живой и неживой природы. Немецкий физик Р. Клаузис в 1865 году впервые пролил свет на глубинные причины этого явления. Он постулировал, что в природе все процессы протекают асимметрично, однонаправленно. Разрушение происходит само собой, а созидание требует затраты энергии. За счет этого в мире постоянно происходит нарастание энтропии – обесценивание энергии и увеличение хаоса. Этот фундаментальный закон естествознания называется также вторым началом термодинамики. Согласно ему, для созидания и существования любой структуры необходим приток энергии извне, поскольку сама по себе энергия имеет тенденцию рассеиваться в пространстве (этот процесс более вероятен, чем создание упорядоченных структур). Живые организмы относятся к открытым термодинамическим системам: растения поглощают солнечную энергию и преобразуют ее в органические и неорганические соединения, животные разлагают эти соединения и таким образом обеспечивают себя энергией. При этом живые существа находятся в термодинамическом равновесии с окружающей средой, постепенно отдают или рассеивают энергию, поставляя энтропию в мировое пространство. Живые организмы в каком-то смысле противостоят нарастанию энтропии и хаоса во Вселенной, образуя все более сложные структуры и накапливая информацию. Этот процесс противоположен процессу старения.
Такая борьба с энтропией возможна, по-видимому, благодаря существованию неустаревающей генетической программы, которая многократно переписывается и передается следующим поколениям. Живой организм можно сравнить с книгой, которая постоянно переиздается. Бумага, на которой написана книга, может износиться и истлеть, но содержание ее вечно. Утверждение того, что все живое подвержено старению не совсем точно: есть ситуации, к которым это правило неприменимо. Например, что происходит, когда живая клетка или бактерия в процессе размножения делится пополам? Она дает начало двум другим клеткам, которые в свою очередь снова делятся, и так до бесконечности. Клетка, давшая начало всем остальным, не успела состариться, фактически она осталась бессмертной. Вопрос о старении у одноклеточных организмов и непрерывно делящихся организмов, например половых или опухолевых, остается открытым. А. Вейсман в конце XIX века создал теорию, которая постулировала бессмертие бактерий и отсутствие у них старения. Многие ученые согласны с ней и сегодня, другие же подвергают ее сомнеию. Доказательств хватает у тех и других. А как обстоит дело с многоклеточными организмами? Ведь у них большая часть клеток не может постоянно делиться, они должны выполнять какие-то другие задачи – обеспечивать движение, питание, регуляцию внутренних процессов. Это противоречие между необходимостью специализации клеток и сохранением их бессмертия природа разрешила путем разделения клеток на два типа. Соматические клетки поддерживают жизненные процессы в организме, а половые клетки делятся, обеспечивая продолжение рода. Соматические клетки стареют и умирают, половые же практически вечны. Существование огромных и сложных многоклеточных организмов, содержащих триллионы соматических клеток, в сущности направлено к тому, чтобы обеспечить бессмертие половых клеток. Как же происходит старение у соматических клеток? Американский исследователь Л. Хейфлик установил, что существуют механизмы, ограничивающие число делений: в среднем каждая соматическая клетка способна не более чем на 50 делений, а затем стареет и погибает. Постепенное старение целого организма обусловлено тем, что все его соматические клетки исчерпали отпущенное на их долю число делений. После этого клетки стареют, разрушаются и погибают. Если соматические клетки нарушают этот закон, они делятся непрерывно, многократно воспроизводя свои новые копии. Ни к чему хорошему это не приводит – ведь именно так появляется в организме опухоль. Клетки становятся “бессмертными”, но это мнимое бессмертие в конечном счете покупается ценой гибели всего организма. Действие второго начала термодинамики Как уже говорилось выше, второе начало термодинамики имеет несколько формулировок. Одна из них: вечный двигатель второго рода построить нельзя. Вечный двигатель второго рода – тепловая машина, которая все тепло, получаемое от сжигания топлива переводит в работу, то есть такая машина, у которой коэффициент полезного действия (КПД) равен 100%. Оказывается машину с КПД равным 100% нельзя построить в принципе. Все машины – машины реальные. Французский механик Сади Карно ввел понятие их идеала (идеальной тепловой машины). Идеальной машины на практике не существует, как и в общественной жизни: полностью идеальных людей не бывает, но к идеалу надо стремиться. Идеальную машину так же нельзя построить с КПД 100%. Существует и вечный двигатель первого рода, под которым понимается тепловая машина, которая совершает работу без затрат энергии. И такую машину построить нельзя, хотя такие попытки совершаются. Оказывается в физике узаконено, что часть тепла тепловая машина обязательно должна терять! А сколько машине следует терять? Столько, сколько теряет идеальная тепловая машина, но такая машина, как указывалось выше, в природе не существует, но к ней можно сколько угодно близко приблизиться. Формулировка второго начала с привлечением энтропии: самопроизвольно процессы в природе протекают в направлении возрастания энтропии. Если ввести цену тепла, то процессы в природе самопроизвольно протекают в направлении обесценивания тепла. Второе начало действует и в биологических процессах, и в общественной жизни людей. В этом столетии предполагается полет на Марс. Длительный будет полет.

Некоторые фантазируют о том, что будет разработана такая пища, которая полностью будет усваиваться человеческим организмом, то есть в космическом аппарате туалет не потребуется. Но это не так! Без туалета никак нельзя, как того требует второе начало. Существуют микроскопические образования – вирусы. Они также ходят по нужде! Если рассматривать общественную жизнь людей, то второе начало является основой инфляции. Явление инфляции закономерное явление. Имеется по крайней мере две социальные системы: социалистическая и капиталистическая. При социализме вы приходите в магазин и покупаете товар, например, булки хлеба. Платите 20 коп. за булку. Приходите через месяц – платите 20 коп. за булку, приходите через год – платите 20 коп…. В этом случае: (Стоимость n булок) / (n булок) = Цена1 (Стоимость n булок) / (n булок) = Цена2 при этом, Цена1 = Цена2. Знак равенства ставится только для идеальной системы. Такие системы в природе не существуют. Таким образом, социалистическая система – идеальная система. Сама собой она существовать не может, необходимы усилия для ее поддержания. При капитализме вы приходите покупать те же булки хлеба. В первый месяц цена булки – 3 руб., через месяц цена булки – 4 руб., через два месяца – 5 руб…. (Стоимость n булок) / (n булок) = Цена1 (Стоимость n булок) / (n булок) = Цена2 при этом, Цена1 < Цена2. Здесь знак неравенства. Это есть реальная система, процесс совершается самопроизвольно, без насилия. Поскольку этот закон объективный, то им следует умело пользоваться! В Японии работал корреспондентом Цветов, который периодически по телевидению сообщал из Японии об организации их производства, экономике, политике… беседовал он и с руководством фирмы «SHARP», в которой каждый сотрудник должен вносить рационализаторские предложения с целью повышения эффективности работы фирмы. Цветов поинтересовался у руководства, почему они в этом случае выбрасывают деньги на ветер. Но руководство на это ответило, что высококачественную сталь нельзя получить без шлака.

Заключение


Особое место занимает вопрос о философском статусе второго начала термодинамики. Постулат Клаузиуса и концепция тепловой смерти вызвали большое количество возражений. Критическое отношение многих ведущих физиков того времени к закону сохранения энергии, дискуссия вокруг второго начала термодинамики вытекали из самого существа этих фундаментальных открытий, затрагивающих глубокие вопросы мировоззрения. Эпоху установления начал термодинамики сравнивали – и не без основания – с эпохой Галилея. Наука и тогда, и в эту эпоху вплотную подходила к вопросам, издавна считавшимися прерогативой религии: начало и конец мироздания, сотворение и уничтожение материи и движения. Закон сохранения энергии укреплял позиции материалистов и подрывал устои религиозного мировоззрения. С другой стороны, концепция тепловой смерти казалась благоприятной для церковного учения о «конце мира», о «последних временах», предшествующих вторичному приходу Христа. Все это способствовало возникновению острой философской дискуссии вокруг новых открытий в физике. В сознании широкой публики второе начало термодинамики окружено странным магическим ореолом. Фландерс и Сванн написали о нем песню. Ч. П. Сноу читал о нем лекции. Второе начало является ключевым элементом в великолепном здании науки о теплоте. Физические законы – это фундаментальные законы природы, особенно те, основу которых составляют случайные события. К ним следует относиться серьезно.

Список литературы:


1. Поршаков Б.П., Романов Б.А. Основы термодинамики и теплотехники.- М.: Недра, 1988.

2. Теплоэнергетика и теплотехника. Общие вопросы (справочник).- М.: Энергия, 1980.

3. Кириллин В.А. и др. Техническая термодинамика: Учебник для вузов.- 4-е изд., перераб.- М.: Энергоатомиздат, 1983.

4. Виленчик М.М. Биологические основы старения и долголетия.- М., "Знание", 1987.

5. Гладышев Г.П. Термодинамика старения.- "Известия Академии наук. Серия биологическая" №5, 1998.

6. Федосеев П.Н. Философия и научное познание.- М., 1983.