Файл: I. Введение ii. Химия союзник медицины.rtf

ВУЗ: Не указан

Категория: Реферат

Дисциплина: Не указана

Добавлен: 03.12.2023

Просмотров: 61

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


Анальгин и амидопирин (пирамидон) широко используются при различных болевых ощущениях (головная боль, радикулиты, миозиты, невралгии, гриппе, лихорадках, ревматизме). У этих препаратов более выражен обезболивающий эффект; их противовоспалительное действие невелико. Длительное применение этих лекарств может вызвать угнетение процессов кроветворения.





















Снотворные средства


Снотворные средства угнетающе влияют на передачу возбуждения в головном мозге. По механизму влияния на центральную нервную систему их относят к наркотическим веществам. Небольшие дозы снотворных средств действуют успокаивающе, средние—вызывают сон, большие - наркотическое действие. Бывают препараты длительного действия (барбитал, фенобарбитал), средней продолжительности (нитразепам, барбамил) и короткого действия (ноксирон, гексабарбитал).

Механизм сна под влиянием снотворных средств отличается от естественного, характеризующегося чередованием периодов «медленного» и «быстрого» (до 25% общей продолжительности) сна. Большинство снотворных укорачивает длительность быстрого сна.

Значительное количество снотворных относится к производным барбитуровой кислоты. Сама кислота снотворного действия не оказывает. Даже небольшие дозы барбитуратов замедляют обычные скорости двигательных и психических реакций человека на внешние раздражения.

Схема-2

Об этом должны помнить водители, тем более что некоторые барбитураты (фенобарбитал и барбитал) обладают длительным последствием (до 3—5 дней). Для барбитуратов характерен эффект привыкания, который развивается уже через две недели непрерывного приема. Другая особенность барбитуратов состоит в том, что они активируют действие ряда ферментов (в микросомах печени), дезактивируют лекарственные соединения. Поэтому действие лекарств при их совместном приеме с барбитурьтами может быть ослаблено. Барбитураты немного снижают температуру тела.

Антибактериальные и химиотерапевтические средства

Все мы за свою жизнь не раз и не два переболели такими инфекционными заболеваниями, как грипп или ангина. Предупредить эти и другие инфекционные болезни можно с помощью антисептиков и дезинфицирующих средств, уничтожив микробы на подступах к организму. Организму в борьбе с проникающими в него болезнетворными микроорганизмами помогают химиотерапевтическпе средства, обладающие антибактериальным, противовирусным, противогрибковым и другим действием.


К антибактериальным химиотерапевтическим средствам в первую очередь относятся сульфаниламидные препараты и антибиотики. Сульфаниламиды — первые антибактериальные средства, использованные в борьбе с такими болезнями, как ангина, пневмония, дифтерия, различные желудочно-кишечные заболевания (дизентерия и др.). Они эффективны в борьбе и с пневмококками, менингококками, гонококками. В настоящее время сульфациламиды подразделяют на препараты, хорошо всасывающиеся в желудочно-кишечном тракте (сульфадимезин, сульфазин, норсульфазол, этазол - непродолжительного действия; сульфадиметоксин, сульфапиридазин - продолжительного действия), и препараты, плохо всасывающиеся (фталазол):

Схема-3

Механизм действия всех сульфаниламидов основан на структурной аналогии их строения и строения фолиевой кислоты, которую синтезируют многие бактерии.


Витамины.

Витамины… Они нужны как пища и воздух, но действует в очень малых количествах, без них организм не может обойтись. Недостаток их есть причина ряда тяжелых заболеваний и снижение сопротивляемости, т.е. ослабление иммунных сил организма к действию микробов. В 1880 г. врач Н. Н. .Лунин доказал существование группы веществ, не относящихся к обычным частям пищи, но жизненно важным для человека. Его исследования были развиты К.Функом в 1911 г., предложившим их название- витамины. Еще через 11 лет Н. Н. Бессонов открыл аскорбиновую кислоту- витамин С, излечивающий цингу и повышающий сопротивляемость организма к болезням. Ее состав оказался сравнительно простым:

Схема-4

Изучение витаминов помогло биохимикам понять механизм действия лекарственных веществ и немало способствовало успехам химиотерапии. Сейчас известно, что аскорбиновая кислота облегчает процесс переноса атомов водорода от пищевых веществ к кислороду, т.е. улучшает дыхание клеток.

Другой витамин, названный витамином А, играет большую роль в процессе восприятия света сетчаткой глаза и необходим для сохранения клеточных оболочек. Он защищает организм от простудных заболеваний, пневмонии, болезней кожи. Его формула довольно сложна:

Схема-5

Обращает на себя внимание большой углеводородный “хвост” этой молекулы. На конце такой цепочки находится всего одна группа ОН. Так как группа ОН повышает растворимость соединений в воде, а углеводородная цепь понижает ее, витамин А плохо растворим в воде. Но он хорошо растворяется в жирах.



Витамин В1, был открыт при изучении причин тяжелой болезни бери-бери, сопровождающейся прогрессирующими параличами, расстройством сердечной деятельности и нарушениями работы нервной системы. Все эти явления вызваны недостатком в организме витамина В1, который входит в состав нескольких ферментов. Последние ускоряют биохимические реакции и таким образом регулируют сложный, многоступенчатый процесс окисления пищевых веществ. В состав витамина В1 входят азот и сера:

Схема-6

Другие стадии окисления требуют присутствия других витаминов, часто объединяемых в общую группу витаминов В. К ним же причисляют и витамины, необходимые для отдельных этапов синтеза сложных соединений, процессов переноса отдельных групп атомов от одной молекулы к другой, образования гемоглобина и т.п. Было доказано, что витамин В12, содержащий в молекуле ион кобальта, необходим для кроветворения и является прекрасным средством для излечивания злокачественной анемии. Он проявляет лечебное действие в ничтожно малых количествах.

Витамины группы D необходимы для нормального развития костей, витамин Р (рутин) усиливает действие витамина С и повышает прочность и эластичность стенок кровеносных сосудов, витамин Е улучшает состояние нервно-мышечной системы и подавляет образование опасных для клеток соединений, содержащих свободные радикалы (т.е. имеющих не спаренные электроны и вследствие этого чрезмерно повышенную химическую активность). Тесная связь между ферментами и витаминами показывает, что, применяя витамины для лечения болезней, врач, в сущности, восстанавливает то химическое равновесие, которое соответствует нормальной работе организма.

Но вернемся к борьбе с микробами. Открытие и применение витаминов, развитие методов иммунизирования с помощью специфических сывороток отодвинули на второй план работы в том направлении, которое было намечено П.Эрлихом. Это понятно, так как П.Эрлих добивался успеха, идя чисто опытным путем, не имея ясных представлений о механизме поражения микробов именно его «пулями». Биохимия в это время еще не была в состоянии объяснить гибель микробов «на молекулярном уровне». И пришлось довольно долго ждать решения этой задачи хотя бы для некоторых лекарственных веществ. Лишь в 1932 г. ученик П. Эрлиха химик Г. Домагк, изучая соединения, содержащие два связанных атома азота —N=N— (диазосоединения), обнаружил, что одно из них (его позднее назвали красным стрептоцидом) успешно борется со стрептококковыми инфекциями. Опыты шли на мышах. Но однажды сын Г.Домагка, случайно уколов руку, заболел тяжелым стрептококковым заражением крови. Г.Домагк рискнул ввести ребенку красный стрептоцид и спас своего сына от грозившей ему неизбежной смерти.После этого клинические испытания стали проводить быстрее и стрептоцид начал свое победное шествие по больницам и клиникам. Красная форма лекарства состояла из двух компонентов, неактивен был только один из них - белый стрептоцид. Он оказался менее сложным соединением, и именно его ввели врачи в медицинскую практику для борьбы с инфекциями. Было доказано, что причина, по которой стрептоцид подавляет рост микробов, заключается в том, что его молекула по своему строению очень похожа на парааминобензойную кислоту, необходимую для жизнедеятельности микробов; усваивая вместо нее стрептоцид (сульфаниламид, на языке химиков), микроб отравляется и гибнет. Формулы этих двух веществ следующие:


Схема-7

Разница в молекулах состоит только в том, что вместо группы —СООН в сульфаниламиде находится группа —SO2NH2; этого достаточно, чтобы отравить клетку стрептококка.

Теперь пути дальнейших исследований сделались более ясными: очевидно, следует варьировать состав и структуру замещающих групп, вводить заместители в аминогруппу и испытывать полученные соединения на их антимикробное действие. Так, если в группах —NH2 (сульфаниламида) заместить по одному атому водорода на группы:

Схема-8
(в группе —SO2NH2), то получится соединение, известное под названием фталазол - прекрасное лечебное средство в борьбе с кишечными инфекциями. Подбор заместителей позволяет находить соединения, специфически «настроенные» на определенный вид микробов. Это нелегкая работа: из более чем 6000 испытанных соединений лишь 20 оказались пригодными для медицинских целей. Но в целом изучение этого класса было весьма плодотворным. Удалось создать препараты, способные подавлять развитие туберкулезных бактерий; в 1946 и 1951 гг. группа, возглавляемая Г. Домагком, получила парааминосалициловую кислоту (ПАСК) и изониазид, применение которых в последующие годы резко снизило смертность от туберкулеза:

Схема-9


В 1877 г. английский ученый У.Роберте пришел к выводу о том, что между плесневыми грибами и бактериями существует антагонизм. Микроорганизмы создают вокруг себя «зону безопасности», выделяя в окружающую среду особые вещества (их назвали антибиотиками), назначение которых—уничтожать другие микроорганизмы. Но среди этих «других» вполне могли оказаться и стафилококки, и стрептококки, и пневмококки и прочие серьезные враги человека. В 20-х годах нашего века А.Флеминг - английский микробиолог, изучая стафилококки, колонии которых росли в чашках Петри на студне из агара, заметил, что в одной из чашек микробы почти не развиваются. А.Флеминг решил, что в эту чашку из атмосферы случайно попали споры плесневого гриба, относившегося к роду пенициллиум. Вещество, полученное из жидкости, в которой рос гриб, названное пенициллином, оказалось исключительно активным по отношению к целому ряду опасных микроорганизмов. Была установлена и формула пенициллина, получены его соли и различные производные, например натриевая соль бензилпенициллина:

Схема-10


Пенициллин действует на стрептококки, пневмококки, менингококки, спирохеты и несколько слабее на стафилококки. Воспаление легких, эндокардит, раневые инфекции, гнойный плеврит, перитонит, цистит, остеомиелит, ангины, дифтерия, рожистое воспаление, менингит, скарлатина, сибирская язва - вот неполный список тяжелейших болезней, которые одолевает пенициллин. Итак, в дополнение к сульфаниламидам появились антибиотики. Исследования различных сред, в которых росли микробы, главным образом почв, взятых в различных районах земного шара, проводились широким фронтом. Вещества, выделяемые микроорганизмами, очищали, концентрировали и испытывали их способность подавлять рост болезнетворных микробов.


В историю освоения производства антибиотиков большой вклад внесли и советские ученые Г. Н. Гаузе, 3. В. Ермольева, М. М. Шемякин и др. В настоящее время врачи располагают большим набором веществ этого класса, эффективных при лечении заболеваний. Очень большую роль в лечении туберкулеза сыграл выделенный С.Я.Ваксманом из гриба актиномицета стрептомицин. Левомицетин и тетрациклин (1945—1948 гг.) оказались ценными средствами при лечении сыпного тифа, дизентерии, бруцеллеза, коклюша, пневмонии и других заболеваний. Как и всегда, основной каркас молекулы лекарственного вещества допускает различные вариации, позволяющие улучшить его свойства или «настроить» его на определенный вид микробов.

В настоящее время известны уже сотни антибиотиков и установлен в общих чертах механизм их действия. Так, установлено, что пенициллин препятствует образованию клеточной стенки у бактерий, тетрациклины нарушают работу тех частей клетки, в которых происходит синтез белков (рибосомы), синтезы белка блокируются также и стрептомицином. Практическое применение антибиотиков требует осторожности. Многие из них токсичны, некоторые вызывают аллергические реакции. Что же касается привыкания к ним микробов, то приходится постоянно бороться с «химическим сопротивлением» микробов. Тем не менее знание всех стадий обмена веществ у микроорганизмов, доступное современной биохимии, дает основания думать, что человечество, несомненно, выиграет бой с примитивными микроорганизмами и будущие поколения не будут знать инфекционных болезней.

Но ими не исчерпывается все разнообразие недугов человека. Существуют еще многочисленные заболевания, связанные с нарушением регуляции физиологических процессов. Примером может служить диабет, при котором расстраивается система регулирования содержания сахара в крови и человек страдает от чрезмерного повышения концентрации сахара. Лечить такие болезни очень трудно. Здесь необходим союз медицины, физиологии, химии и биохимии. Намечаются успехи и на этом фронте. В частности, сульфамидные препараты оказались пригодными для снижения уровня сахара. Другая болезнь— гипертония также поддается лечению специальными препаратами, понижающими давление крови и способствующими расширению сосудов. Будем же уверенно смотреть в будущее, полагаясь на объединенные силы всех ветвей науки о природе и не забывая, что тайны жизни и развития организма скрыты в его молекулах.