ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 04.12.2023
Просмотров: 61
Скачиваний: 1
СОДЕРЖАНИЕ
ОРЕНБУРГСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ КАФЕДРА ХИМИИ
«УГЛЕВОДЫ. ОЛИГОСАХАРИДЫ. ПОЛИСАХАРИДЫ.»
Олигосахариды. Определение. Классификация.
Дисахариды. Содержание в продуктах природного происхождения.
Дисахариды содержатся в продуктах природного происхождения:
Дисахариды. Структура дисахаридов.
Полисахариды. Определение. Классификация.
Структурные полисахариды можно разделить на два класса.
Полисахариды. Отдельные представители. Гликоген (животный крахмал)
Полисахариды. Отдельные представители. Целлюлоза (клетчатка) (лат. cellula - клетка)
Соединительная ткань выполняет опорную, трофическую (питательную) и защитную функции.
К соединительной ткани относят также кровь и лимфу.
Полисахариды. Отдельные представители. Хондроитинсульфаты
Функции полисахаридов
Структурные полисахариды придают клеточным стенкам прочность, водорастворимые полисахариды не дают клеткам высохнуть, резервные полисахариды по мере необходимости расщепляются на моносахариды и используются организмом, выступая в роли энергетического резерва.Хорошо известными резервными полисахаридами являются крахмал, гликоген, фруктаны, галактоманнаны и др. Они способны быстро гидролизоваться имеющимися в клетках ферментами.
Структурные полисахариды можно разделить на два класса.
К первому относят нерастворимые в воде полимеры, образующие волокнистые структуры и служащие армирующим материалом клеточной стенки (целлюлоза высших растений и некоторых водорослей, хитин грибов).
Ко второму классу относят гелеобразующие полисахариды, обеспечивающие эластичность клеточных стенок и адгезию клеток в тканях. Характерными представителями этого класса полисахаридов являются гликозаминогликаны (мукополисахариды) соединительной ткани животных, пектины и некоторые гемицеллюлозы высших растений.Функции полисахаридов
К защитным полисахаридам относят камеди высших растений (гетерополисахариды сложного состава и строения), образующиеся в ответ на повреждение растительной ткани, и внеклеточные полисахариды микроорганизмов и водорослей, образующие защитный слой или изменяющие свойства среды обитания клеток.Структура полисахаридов
Структура полисахаридов
Полисахариды обычно построены из остатков альдоз. Гликозидные связи образуются за счет гидроксила при C(1)-атоме углерода одного моносахаридного остатка и любого другого гидроксила следующего моносахаридного остатка. Полисахариды, мономерные звенья которых соединены гликозидными связями одного типа, образуют длинные линейные цепи. Если же в полисахариде имеются гликозидные связи различных типов или различные остатки моносахаридов, то может возникнуть разветвленная цепь.
Структура полисахаридов
Первичная структура полисахаридов – это последовательность мономерных остатков.
Помимо первичной структуры полисахариды могут обладать вторичной структурой – например, амилоза представляет собой макромолекулу, свёрнутую в спираль.
Структура полисахаридов
- Большинство полисахаридов представляют собой бесцветные аморфные порошки, которые разлагаются при нагревании до температуры выше 200 °С. Полисахариды, молекулы которых имеют разветвленную цепь или полианионный характер благодаря карбоксильным или сульфатным группам, как правило, достаточно легко растворимы в воде, несмотря на высокий молекулярный вес. Линейные полисахариды, обладающие жесткими вытянутыми молекулами, практически в воде нерастворимы и даже почти не набухают.
Физические свойства полисахаридов.
- Растворимость конкретного полисахарида определяет метод извлечения его из природного сырья. Так, нерастворимые в воде целлюлозу и хитин получают, отмывая подходящими реагентами все сопутствующие вещества. А другие полисахариды вначале переводят в раствор, а затем выделяют с помощью образования нерастворимых комплексов или солей, ионообменной хроматографией и т. д. Используются также методы ультрафильтрации и ультрацентрифугирования.
Физические свойства полисахаридов.
- В молекулах полисахарида в конце цепи обычно находится восстанавливающий остаток моносахарида. Однако восстанавливающие свойства полисахарида в целом проявляются очень слабо, в связи с небольшим удельным весом этого остатка по отношению ко всей массе молекулы. Таким образом, вклад альдегидной группы незначителен, и основную функциональную нагрузку несут гидроксильные группы. Как и в олигосахаридах, гликозидные связи в полисахаридах чувствительны к действию кислот.
- Из химических реакций полисахаридов важной является гидролиз гликозидных связей под действием разбавленных минеральных кислот, позволяющий получить исходные моносахариды. Наличие множества гидроксильных групп позволяет проводить реакции алкилирования или ацилирования.
Химические свойства полисахаридов.
- 1. Окисление
- 2. Образование простых и сложных эфиров
- 3. Гидролиз
In vivo гидролиз полисахаридов «катализируется» ферментами: крахмал гидролизуется амилазами, целлюлоза – целлюлазами, гемицеллюлозы – гемицеллюлазами.
Химические свойства полисахаридов.
- Крахмал, синтезируемый разными растениями в хлоропластах (под действием света при фотосинтезе) несколько различается по структуре зёрен, степени полимеризации молекул, строению полимерных цепей и физико-химическим свойствам.
- Крахмал, как правило, представляет собой смесь двух полисахаридов – амилозы и амилопектина.
Фрагмент молекулы амилозы
Крахмал: амилоза и амилопектин.
Молекула амилозы имеет линейное строение, является растворимой фракцией крахмала. Амилоза состоит из молекул глюкозы, связанных между собой по 1,4-гидроксильным связям. Это длинный неразветвленный полимер, количество отдельных молекул глюкозы в среднем равно 200.
Крахмал: амилоза и амилопектин.
- Амилопектин имеет разветвлённое строение. Это достигается за счет того, что, кроме 1 и 4-гидроксильных связей, молекулы глюкозы в нем образуют еще и связи по 6-й спиртовой группе. Каждая такая "третья" связь в молекуле - новое ответвление в цепи. Общая структура амилопектина по виду напоминает гроздь, макромолекула в целом существует в виде шаровидной структуры. Количество мономеров в ней примерно равно 6000, и молекулярная масса одной молекулы амилопектина значительно больше, чем у амилозы.
Крахмал: амилоза и амилопектин.
Молекулярная масса амилопектина 1-6 миллионов.
Крахмал: амилоза и амилопектин.
Полисахариды. Отдельные представители. Гликоген (животный крахмал)
Полисахарид состава (C6H10O5)n, образованный остатками глюкозы, соединёнными связями α-1→4 (в местах разветвления — α-1→6). В клетках животных служит основным запасным углеводом и основной формой хранения глюкозы. Откладывается в виде гранул в цитоплазме в клетках многих типов (главным образом в клетках печени и мышц).
Гликоген образует энергетический резерв, который может быть быстро мобилизован при необходимости восполнить внезапный недостаток глюкозы.
При недостатке в организме глюкозы гликоген под воздействием ферментов расщепляется до глюкозы, которая поступает в кровь. Регуляция синтеза и распада гликогена осуществляется нервной системой и гормонами.
Полисахариды. Отдельные представители. Целлюлоза (клетчатка) (лат. cellula - клетка)
Растительный полисахарид, являющийся самым распространенным органическим веществом на Земле.
Молекулы целлюлозы, в отличие от крахмала, имеют линейное (неразветвленное) строение, вследствие чего целлюлоза легко образует волокна.
Этот биополимер обладает большой механической прочностью и выполняет роль опорного материала растений, образуя стенку растительных клеток.
Попадая в кишечник, целлюлоза впитывает большое количество воды, помогает выводу из организма каловых масс, токсинов, радионуклидов, а также способствует нормализации уровня сахара в крови.
Декстран представляет собой полимер глюкозы, является полифункциональным плазмозамещающим раствором, восстанавливает нормальную гемодинамику, увеличивает объем жидкости в кровотоке, улучшает микроциркуляцию, уменьшает вязкость крови и агрегацию форменных элементов крови.
Декстраны являются полимерами глюкозы, могут иметь различную степень полимеризации, в зависимости от которой растворы, получаемые из них, имеют различное функциональное назначение. Растворы, содержащие декстран с относительной молекулярной массой около 60000, используются в качестве гемодинамических средств, восстанавливающих ОЦК. Вследствие высокого онкотического давления, превышающего онкотическое давление белков плазмы в 2,5 раза, они очень медленно проходят через сосудистую стенку и длительное время циркулируют в сосудистом русле, нормализуя гемодинамику за счет тока жидкости по градиенту концентрации — из тканей в сосуды. Как результат, быстро повышается и длительно удерживается на высоком уровне АД, уменьшается отек тканей.
Растворы, содержащие среднемолекулярные декстраны (30000–40000), используют в качестве дезинтоксикационных средств. При их введении улучшается текучесть крови, уменьшается агрегация форменных элементов. Они также по осмотическим механизмам стимулируют диурез (фильтруются в клубочках, создают в первичной моче высокое онкотическое давление и препятствуют реабсорбции воды в канальцах), чем способствуют (и ускоряют) выводу из организма ядов, токсинов, деградационных продуктов обмена. Сами декстраны нетоксичны, экскретируются почками в неизмененном виде. В углеводном обмене не участвуют. Какая-то часть высокомолекулярных декстранов при применении в больших дозах может откладываться в клетках ретикулярной системы, где метаболизируется до глюкозы.
Соединительная ткань выполняет опорную, трофическую (питательную) и защитную функции.
К соединительной ткани относят подкожную клетчатку, сухожилия, связки, кости, хрящи, стенки крупных кровеносных сосудов, роговицу.
К соединительной ткани относят также кровь и лимфу.
Полисахариды. Отдельные представители. Хондроитинсульфаты
Полимерные сульфатированные гликозаминогликаны.
Являются специфическими компонентами хряща. Вырабатываются хрящевой тканью суставов, входят в состав синовиальной жидкости. Необходимым строительным компонентом хондроитинсульфата является глюкозамин, при недостатке глюкозамина в составе синовиальной жидкости образуется недостаток хондроитинсульфата, что ухудшает качество синовиальной жидкости и может вызвать хруст в суставах.
Хондроитин-6-сульфат
В медицине хондроитина сульфат применяется
в качестве
лекарственного
средства группы нестероидных противовоспалительных препаратов.
Полисахариды. Отдельные представители. Гиалуроновая кислота
Несульфированный гликозаминогликан, входящий в состав соединительной, эпителиальной и нервной тканей. Гиалуроновая кислота является главным компонентом синовиальной жидкости, отвечающим за её вязкость. Важный компонент суставного хряща, в котором присутствует в виде оболочки каждой клетке (хондроцита). Также гиалуроновая кислота входит в состав кожи, где участвует в регенерации ткани. При чрезмерном воздействии на кожу ультрафиолета происходит её воспаление («солнечный ожог»), при этом в клетках дермы прекращается синтез гиалуроновой кислоты и увеличивается скорость её распада.
Гиалуроновая кислота
- Гиалуроновая кислота вместе с хондроитинсульфатом образуют очень сложные агрегаты, напоминающие ёрш для мыться бутылок.
- При связывании гиалуроновой кислоты с мономерами аггрекана в присутствии связующего белка, в хряще формируются крупные отрицательно заряженные агрегаты, поглощающие воду. Эти агрегаты отвечают за упругость хряща (устойчивость его к компрессии).
- В составе таких структур – ершей- встречается кератансульфаты I и II, состоящие из повторяющихся звеньев {D-Галактоза – N-ацетил-D-глюкозамин} и содержащие сульфатные остатки.
- Гепарин (лат. hepar – печень) содержит остатки ацетилированного или сульфированного D-глюкозамина, D-глюкуроновой и L-идуроновой кислот. Гепарин содержится в клеточных стенках кровеносных сосудов, выполняя антикоагулянтную функцию.
- Гепарансульфат состоит из остатков тех же моносахаридных производных. Однако в составе гепарина преобладающей уроновой кислотой является D-глюкуроновая, а в гепарансульфате L-идуроновая.
- Дерматансульфат по структуре напоминает и хондроитинсульфат и гепарансульфат. Его отличие от хондроитинсульфата состоит в том, что вместо D-глюкуроновой кислоты, он содержит L-идуроновую кислоту.
Все эти полисахариды связаны с белковой частью, образуя протеогликаны.
Литература
Литература
- Тюкавкина Н.А., Биоорганическая химия [Электронный ресурс] : учебник / Тюкавкина Н.А., Бауков Ю.И., Зурабян С.Э. - М. : ГЭОТАР-Медиа, 2012. - 416 с. - ISBN 978-5-9704-2102-4 - Режим доступа: http://www.studmedlib.ru/book/ISBN9785970421024.html
- Тюкавкина Н.А., Биоорганическая химия: руководство к практическим занятиям [Электронный ресурс] : учебное пособие / Под ред. Н.А. Тюкавкиной - М. : ГЭОТАР-Медиа, 2013. - 168 с. - ISBN 978-5-9704-2625-8 - Режим доступа: http://www.studmedlib.ru/book/ISBN9785970426258.html