Файл: Учебник для институтов физической культуры Коц Я. М. Оглавление Введение.rtf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 12.12.2023

Просмотров: 662

Скачиваний: 3

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Спортивная физиология

Учебник для институтов физической культуры

Общая физиологическая классификация физических упражнений

Физиологическая классификация спортивных упражнений

Глава 2. Динамика физиологического состояния организма при спортивной деятельности

Предстартовое состояние и разминка

Врабатывание, "мертвая точка", "второе дыхание"

Устойчивое состояние

Утомление

Восстановление

Глава 3. Физиологические основы мышечной силы и скоростно-силовых качеств (мощности)

Физиологические основы мышечной силы

Физиологические основы скоростно-силовых качеств (мощности)

Глава 4. Физиологические основы выносливости

Аэробные возможности организма и выносливость

Кислородтранспортная система и выносливость

Мышечный аппарат и выносливость

Глава 5. Физиологические основы формирования двигательных навыков и обучения спортивной технике

Условнорефлекторные механизмы как физиологическая основа формирования двигательных навыков

Роль афферентации (обратных связей) в формировании и сохранении двигательного навыка В сложном нервном механизме формирования двигательных что в и управления ими важное место принадлежит информации, получаемой из внешней среды и от различных частей тела и систем организма.Обратные связи и их роль в формировании и совершенствовании техники движений. Нервная система, вызывая через пусковые двигательные и вегетативные нервы какую-либо деятельность, благодаря наличию обратных связей сразу же начинает получать от управляемых органов (мышц, сердечнососудистой системы и т.д.). А также из внешней среды информацию о совершившемся действии. Сигналы обратных связей, являясь важнейшим фактором корреляции движений, поступают в ЦНС через органы чувств и поэтому называются также сенсорными коррекциями (Н.А. Бернштейн).Различают внутренние обратные связи, которые сигнализируют о характере работы мышц, сердца и других систем организма, и внешние, несущие информацию о деятельности из внешней среды (точность метания, направление движения мяча в футболе, изменение положения тела противника в борьбе и т.д.).Внутренние обратные связи при выполнении физических упраж нений осуществляются преимущественно через двигательную (проприоцептивную), вестибулярную и интероцептивную сенсорные системы, внешние - через зрительную, слуховую и тактильную.Существенное значение для совершенствования техники движений имеет и так называемая сторонняя информация, получаемая от тренера и других лиц в результате наблюдения за Движениями. Помимо наблюдений в настоящее время широко используется различного рода инструментальная техника, гензомет-Рия, электромиография, цикло- или киносъемки, видеомагнитофонные записи и т. д., позволяющие оценивать пространственные и временные параметры двигательного акта. Особую ценность полученные данные имеют тогда, когда эта информация является "срочной", т. е. используется для улучшения "техники движения непосредственно во-время выполнения упражнения, или при последующих повторениях его (В. С. Фарфель).Интеграция в центральной нервной системе афферентных и других факторов, предшествующих программированию движенияДвигательный акт на всех этапах подготовки и выполнения связан с интеграцией в ЦНС афферентных и других факторов. П. К. Анохин выделяет четыре основных фактора: 1) мотивацию, 2) память, 3) обстановочную информацию и 4) пусковую информацию.В трудовой и спортивной деятельности людей особенно большое значение имеют различного рода социально обусловленные виды мотивации. Благодаря следам в нервной системе (памяти) предшествующий опыт оказывает сильнейшее влияние на оценку любых событий и ситуаций. Большую роль в процессе интеграции играет обстановочная информация. Информация об обстановке, поступающая из окружающей среды, и о состоянии различных функций организма является, несомненно, весьма существенным компонентом правильного программирования в ЦНС различных действий.Наконец, существенное значение имеет пусковая направляющая, т. е. сигналы, какими в спорте являются выстрел, звук свистка, движение флажка, команда и др. Однако многие пусковые раздражители" требующие ответных двигательных актов, весьма сложны; они представляют собой не единичный сигнал, а ситуацию определенного характера. Это всегда сильно затрудняет афферентный синтез. Например, в разных Видах единоборства и спортивных игр новые действия нужно начинать многократно. При этом начало и характер ответных движений определяются не каким-либо отдельным сигналом, а всей создавшейся ситуацией, т. е. совокупностью многих (в ряде случаев десятков и даже сотен) раздражителей. При выполнении разных физических упражнений использование информации, получаемой из внутренней и внешней среды путем обратных связей, имеет специфические особенности. При медленном выполнении двигательных актов обратные связи способствуют корригированию данного движения или какой-либо его фазы. При сложных многофазных движениях, которые выполняются быстро (например, гимнастических), обратные связи играют меньшую роль в текущей коррекции в результате недостатка времени. Наконец, при очень кратковременных движениях (в частности, баллистических - метаниях, бросках) обратные связи могут корригировать длительный акт только при его повторениях.Программирование двигательного акта с учетом состояния исполнительных приборовИнтеграция таких факторов, как па

Двигательная память

Автоматизация движений

Спортивная техника и энергетическая экономичность выполнения физических упражнений

Физиологическое обоснование принципов обучения спортивной технике

Глава 6. Влияние температуры и влажности воздуха на спортивную работоспособность

Физические механизмы теплоотдачи в условиях повышения температуры и влажности воздуха

Физиологические механизмы усиления теплоотдачи в условиях повышенных температуры и влажности воздуха

Тепловая адаптация (акклиматизация)

Питьевой режим

Спортивная деятельность в условиях пониженной температуры воздуха (холода)

Глава 7. Спортивная работоспособность в условиях пониженного атмосферного давления (среднегорья и при смене поясно-климатических условий

Острые физиологические эффекты пониженного атмосферного давления

Горная акклиматизация (адаптация к высоте)

Спортивная работоспособность в среднегорье и после возвращения на уровень моря

Смена поясно-климатических условий

Глава 8. Физиология плавания

Механические факторы

Максимальное потребление кислорода

Кислород транспортная система

Локальные (мышечные) факторы

Терморегуляция

Глава 9. Физиологические особенности спортивной тренировки женщин

Зависимость функциональных возможностей организма от размеров тела

Силовые, скоростно-силовые и анаэробные возможности женщин

Аэробная работоспособность (выносливость) женщин Максимальное потребление кислорода До периода полового. созревания, когда различия в размерах и составе тела между мальчиками и девочками минимальны, МПК тоже почти одинаково. У молодых мужчин оно в среднем на 20- 30% больше, чем у женщин того же возраста. По мере старения различия в МПК между мужчинами и женщинами становятся меньше (рис.90).Разница между МПК у женщин и мужчин снижается примерно до 15-20%, когда оно приведено к весу тела. В 20-30 лет МПК на 1 кг веса тела у женщин составляет в среднем 35-40 мл/кг*мин, а у мужчин - 45-50 мл/кг*мин. Еще меньше разница" когда МПК относят к весу тощей массы тела, поскольку жировая ткань является метаболически неактивной и почти не потребляет кислорода. Различия в МПК между женщинами и мужчинами практически исчезают, если МПК соотносят с активной мышечной массой.Среди мужчин и женщин одного возраста возможны значительные индивидуальные вариации в величинах МПК. У физически более подготовленных женщин МПК такое же, как у физически менее подготовленных мужчин. В группе не занимающихся спортом величины МПК примерно у 75% женщин совпадают с величинами МПК у 50% мужчин.У спортсменок - представительниц видов спорта на выносливость МПК существенно больше, чем у других спортсменок, а тем более у незанимающихся спортом, как и МПК на 1 кг веса тела (у рядовых спортсменок в среднем 55-60 мл/кг*мин, а у наиболее выдающихся, особенно у лыжниц, - 70- 75 мл/кг*мин). Однако в среднем разница в МПК между спортсменками и спортсменами больше, чем между нетренированными женщинами и мужчинами. МПК, отнесенное к весу тела, у женщин-спортсменок на 20-25% ниже, чем у мужчин-спортсменов (у нетренированных эта разница составляет около 15-2.0%). Даже при отнесении к весу тощей массы тела МПК у ведущих женщин-марафонцев на 8,6% меньше, чем у мужчин (соответственно 76,5 и 96,6 мл/кг*мин). У финских лыжниц и лыжников - членов национальной команды разница составляет в среднем лишь 3,7% (у женщин - 86,4, у мужчин - 89,8% мл/кг тощей массы тела мин).Приведенные данные показывают, что у женщин по сравнению с мужчинами максимальная аэробная производительность (мощность) ниже, что предопределяет и более низкие результаты женщин в видах спорта, требующих проявления выносливости. Это, в частности, объясняет относительное снижение рекордных женских результатов по сравнению с мужскими по мере увеличения дистанции. Максимальные возможности кислород-транспортной системы Более низкое МПК у женщин обусловлено сниженными кисло-родтранспортными возможностями женского организма. Максимальное количество кислорода, которое может транспортироваться артериальной кровью, у женщин меньше, чем у мужчин. Это различие связано с тем, что у женщин меньше объем циркулирующей крови, концентрация гемоглобина в крови, АВР-О2, объем сердца, максимальный сердечный выброс (табл. 24)Таблица 24. Средние показатели крови в покое и при максимальной работе у молодых мужчин и женщин

Менструальный цикл и физическая работоспособность

Глава 10. Физиологические особенности спортивной тренировки детей школьного возраста

Индивидуальное развитие и возрастная периодизация

Возрастные особенности физиологических функций и систем

Развитие движений и формирование двигательных (физических) качеств

Физиологическая характеристика юных спортсменов

Глава 11. Общие физиологические закономерности (принципы) занятий физической культурой и спортом

Два основных функциональных эффекта тренировки

Пороговые тренирующие нагрузки

Специфичность тренировочных эффектов

Обратимость тренировочных эффектов

Тренируемость



Во время плавания с субмаксимальным потреблением О2 легочная вентиляция, дыхательный коэффициент, парциальное напряжение и процент насыщения артериальной крови кислородом связаны с потреблением О2 примерно так же, как и при беге на тредбане или при работе на велоэргометре.

Легочная вентиляция и число гребков в минуту являются линейными функциями скорости плавания, хотя у разных людей имеются довольно значительные вариации в положении и наклоне линий связи между этими переменными. Дыхательный объем в 2-3 л отмечается при частоте гребков 42-73 в минуту. Максимальная легочная вентиляция варьирует от 118 л/мин (ВТР8) у специализирующихся в кроле, брассе и дельфине до 159 л/мин у плавающих на спине. При плавании на спине частота дыхания доходит до 64 циклов в минуту (примерно два цикла приходится на полный гребковый цикл), а при других способах плавания - до 40.

Вентиляционный эквивалент О2 при максимальном аэробном плавании ниже, чем при аналогичной наземной работе. Причины такой относительной гиповентиляции - особые механические условия: давление воды на грудную клетку, затрудняющее дыхательные экскурсии, зависимость дыхания от ритма плавания (частоты греб-ковых движений). При одинаковом уровне потребления О2 легочная вентиляция в плавании кролем обычно на 30% меньше, чем в беге или в плавании на спине. Средние величины легочной вентиляции при максимальном аэробном плавании также ниже, чем при максимальном аэробном беге (на уровне "земного" МПК). Частота дыхания в плавании ниже, чем в беге.

Несмотря на относительную гиповентиляцию, парциальное напряжение и содержание О2 в артериальной крови при плавании примерно такие же, как и при наземной мышечной деятельности. Хотя альвеолярно-артериальный О2-градиент при максимальном аэробном плавании ниже, чем при максимальном аэробном беге, насыщение артериальной крови кислородом составляет около 91 %, т. е. такое же.

Таким образом, легочная вентиляция даже во время максимального аэробного плавания достаточна, чтобы насытить артериальную кровь кислородом до такой же степени, что и во время бега. Следовательно, внешнее дыхание, как и на суше, не ограничивает МПК. Более низкое МПК при плавании, чем при наземной локомоции, не связано с относительно сниженной вентиляцией.

Сердечнососудистая система


Сердечный выброс во время плавания увеличивается почти линейно с ростом потребления О2 (скорости плавания), и при одинаковом субмаксимальном потреблении О2 он примерно такой же, как и при беге или работе на велоэргометре.

Максимальный сердечный выброс у тренированных пловцов во время плавания такой же, как при беге, а у нетренированных пловцов может быть на 25% ниже.

Частота сердечных сокращений во время плавания возрастает линейно с увеличением потребления О2 (скорости плавания); она обычно несколько ниже, чем при беге или работе на велоэргометре с таким же уровнем потребления О2. Это необходимо учитывать, когда ЧСС используется как показатель нагрузки. Снижение температуры воды уменьшает ЧСС, что компенсируется увеличением систолического объема.

Максимальная ЧСС при плавании также меньше, чем при беге, в среднем на 10-15 уд/мин. У мужчин она составляет в беге около .200 уд/мин, а в плавании - около 185 уд/мин, у женщин соответственно около 200 и 190 уд/мин.

Как и во время работы на суше, во время плавания с одинаковой относительной аэробной нагрузкой (с равным % МПК) ЧСС у тренированных и нетренированных пловцов в среднем одинакова.

Систолический объем растет при переходе от покоя к легкой работе и далее увеличивается с ростом мощности работы (скорости потребления О2). При относительно небольших аэробных нагрузках он достигает определенного уровня, а затем, несмотря на увеличение нагрузки (скорости плавания), вплоть до максимальной, остается неизменным или лишь слегка увеличивается.

Горизонтальное положение тела создает благоприятные условия для усиленного венозного возврата и соответственно для большого заполнения сердца во время диастолы. Поэтому при одинаковом субмаксимальном уровне потребления О2 систолический объем во время плавания больше, чем во время работы на велоэргометре, что соответственно ведет к снижению ЧСС во время плавания.

При максимальной аэробной нагрузке в плавании достигается наибольший для данного человека систолический объем. У тренированных пловцов он такой, же, как и при беге, а- у нетренированных- ниже, чем при беге. Как и у представителей других видов спорта, требующих проявления выносливости, систолический объем у пловцов в значительной мере определяется объемом (дилятацией) полостей сердца.

Системная АВР-О2 при субмаксимальном уровне потребления О2 примерно одинакова в плавании и в беге, а при максимальном аэробном плавании несколько меньше по сравнению с максимальным аэробным бегом (соответственно около 15- и 16%).



Содержание О2 в артериальной крови примерно одинаково во время плавания и бега. Максимальная экстракция О2 работающими мышцами из крови также одинакова: минимальное содержание О2 в крови бедренной вены в обоих случаях составляет около 2 об%. Следовательно, различие в максимальной системной АВР-О2 отражает, по-видимому, особое распределение кровотока при плавании с увеличением кровоснабжения "неактивных" органов и тканей тела.

Поскольку максимальная АВР-О2 при плавании и беге почти одинакова, сниженное при плавании МПК почти целиком объясняется уменьшенным в воде максимальным сердечным выбросом (из-за снижения максимальной ЧСС). Однако квалифицированные пловцы способны увеличивать свой систолический объем во время плавания, компенсируя сниженную ЧСС и поддерживая максимальный сердечный выброс. В значительной мере механизм этого эффекта в усиленном венозном возврате за счет эффективного действия мышечного "насоса". У неквалифицированных пловцов этот механизм недостаточно развит.

Среднее артериальное давление при субмаксимальной и максимальной нагрузках в плавании больше, чем в беге, обычно на 10-20%. Это может быть результатом повышенного внешнего (гидростатического.) давления на тело и увеличения периферического сосудистого сопротивления кровотоку из-за сужения кожных кровеносных сосудов вследствие низкой кожной температуры (26-28°). Определенную роль играет также количество участвующей в работе мышечной массы. Известно, что сокращение небольших групп мышц вызывает более высокий подъем кровяного давления, чем напряжение больших мышечных групп.

При вертикальном положении тела на суше перфузионное давление в сосудах работающих ног повышено за счет гидростатического давления столба крови. Поэтому перфузия крови при беге облегчена по сравнению с горизонтальным положением тела при плавании. Однако повышенное АД во время плавания может вызвать усиление перфузии крови через сосуды работающих мышц, создавая благоприятные условия для снабжения их кислородом.

Локальные (мышечные) факторы


Исключительно важную роль в плавании, как и в других видах спорта, играют функциональные возможности исполнительного мышечного аппарата. Особую роль играют мышцы рук и пояса верхних конечностей, а при брассе - и мышцы ног.

Исследования композиции мышц показали, что у пловцов более высокий процент медленных волокон, чем у неспортсменов (соответственно 74,3 и 46% в дельтовидной мышце и 52,7% и 36,1% в четырехглавой мышце бедра). Аналогичные данные были получены в исследованиях композиции мышц у спортсменок и нетренированных женщин. У пловцой-спринтеров быстрые волокна составляют 60-65% всех волокон дельтовидной мышцы.

В процессе плавательной тренировки происходит усиление окислительного потенциала быстрых волокон, так что рабочие мышцы почти не имеют быстрых гликолитических волокон (II-В) и содержат практически только быстрые окислительные волокна (II-А) - см. табл. 16. Наряду с высоким процентом медленных волокон и уровнем их окислительного потенциала преобразование быстрых волокон в быстрые окислительные создает большой аэробный потенциал для рабочих мышц пловца.

К этому следует добавить усиленную капилляризацию рабочих мышц, что наряду с повышением активности ферментов окислительного метаболизма, увеличением количества и размеров митохондрий, содержания миоглобина и другими локальными изменениями ведет к повышению аэробных возможностей этих мышц. Это находит свое отражение в повышении МПК и аэробной работоспособности (выносливости) пловца.


Терморегуляция


Температура воды обычно ниже температуры кожи. Вода обладает большой теплоемкостью и теплопроводностью, что в сочетании с конвекцией (движением воды вдоль тела) создает предпосылки для значительных теплопотерь в воде. Если в условиях воздушной среды человек поддерживает тепловой баланс (постоянную температуру тела), несмотря на большие колебания температуры воздуха, то в условиях водной иммерсии для поддержания нормальной температуры тела без его теплоизоляции или усиления теплопродукции необходима температура воды около 33.° Самая низкая температура воды, при которой в условиях полного покоя может поддерживаться тепловой баланс (критическая температура воды), варьирует от 22° (для полных) до 32° (для худых). Быстрая потеря тепла в воде
особенно опасна для пловцов-стайеров и ныряльщиков, длительно находящихся в воде.

Средний поток тепла от кожи в воду определяется разностью между средней температурой кожи и температурой воды. В покое температура кожи на 1-2° выше температуры воды, а при активном плавании эта разница менее 1° Тем не менее тепло так быстро отводится от поверхности тела в воду, что теплопотери определяются (лимитируются) главным образом тканевой проводимостью, которая, в свою очередь, зависит от разности между температурой ядра и температурой кожи. При этом передача тепла не зависит от скорости плавания.

При температуре воды лишь на 2° ниже нейтральной (33°) быстро происходит сужение периферических (кожных и мышечных) сосудов, что увеличивает тканевую изоляцию: уменьшается проведение тепла от ядра тела к коже, т. е. снижаются потери тепла телом. Очень теплая вода обусловливает вазодилятацию и уменьшение тканевой изоляции (увеличение потери тепла). Тканевая изоляция прямо зависит от толщины подкожного жирового слоя. Изменения температуры ядра тела в воде обратно связаны с толщиной подкожного жирового слоя. Поэтому уменьшение проведения тепла за счет снижения кожного кровотока особенно важно для худых людей. Например, при температуре воды 26° эзофагальная температура у худых пловцов снижается на 0,2°, а у полных даже увеличивается на 0,3-0,9°.

После погружения в воду с температурой 10° через 10;-20 мин температура тела (измеренная во рту) падает до 32,5°, а при зимнем купании- до 30°. И здесь большое значение имеют толщина подкожного жирового слоя и гтспень тренированности к таким условиям. Так, при температуре воды 16° нетренированный худой мужчина вынужден покинуть ее через 30 мин, когда его ректальная температура снижается до 34,5°. Достаточно полный тренированный мужчина в этих же условиях может плавать более 6 ч без изменения ректальные температуры.

Во время плавания около 95% всей энергопродукции превращается в тепло. Как уже отмечалось, плавание увеличивает тканевое проведение тепла, что вызывает его отдачу телом, особенно в прохладной воде. При этом теплоотдача больше, чем теплопродукция. Соответственно в прохладной воде (ниже 25°) .тело охлаждается более быстро при активном плавании