Файл: Учебник для институтов физической культуры Коц Я. М. Оглавление Введение.rtf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 12.12.2023

Просмотров: 654

Скачиваний: 3

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Спортивная физиология

Учебник для институтов физической культуры

Общая физиологическая классификация физических упражнений

Физиологическая классификация спортивных упражнений

Глава 2. Динамика физиологического состояния организма при спортивной деятельности

Предстартовое состояние и разминка

Врабатывание, "мертвая точка", "второе дыхание"

Устойчивое состояние

Утомление

Восстановление

Глава 3. Физиологические основы мышечной силы и скоростно-силовых качеств (мощности)

Физиологические основы мышечной силы

Физиологические основы скоростно-силовых качеств (мощности)

Глава 4. Физиологические основы выносливости

Аэробные возможности организма и выносливость

Кислородтранспортная система и выносливость

Мышечный аппарат и выносливость

Глава 5. Физиологические основы формирования двигательных навыков и обучения спортивной технике

Условнорефлекторные механизмы как физиологическая основа формирования двигательных навыков

Роль афферентации (обратных связей) в формировании и сохранении двигательного навыка В сложном нервном механизме формирования двигательных что в и управления ими важное место принадлежит информации, получаемой из внешней среды и от различных частей тела и систем организма.Обратные связи и их роль в формировании и совершенствовании техники движений. Нервная система, вызывая через пусковые двигательные и вегетативные нервы какую-либо деятельность, благодаря наличию обратных связей сразу же начинает получать от управляемых органов (мышц, сердечнососудистой системы и т.д.). А также из внешней среды информацию о совершившемся действии. Сигналы обратных связей, являясь важнейшим фактором корреляции движений, поступают в ЦНС через органы чувств и поэтому называются также сенсорными коррекциями (Н.А. Бернштейн).Различают внутренние обратные связи, которые сигнализируют о характере работы мышц, сердца и других систем организма, и внешние, несущие информацию о деятельности из внешней среды (точность метания, направление движения мяча в футболе, изменение положения тела противника в борьбе и т.д.).Внутренние обратные связи при выполнении физических упраж нений осуществляются преимущественно через двигательную (проприоцептивную), вестибулярную и интероцептивную сенсорные системы, внешние - через зрительную, слуховую и тактильную.Существенное значение для совершенствования техники движений имеет и так называемая сторонняя информация, получаемая от тренера и других лиц в результате наблюдения за Движениями. Помимо наблюдений в настоящее время широко используется различного рода инструментальная техника, гензомет-Рия, электромиография, цикло- или киносъемки, видеомагнитофонные записи и т. д., позволяющие оценивать пространственные и временные параметры двигательного акта. Особую ценность полученные данные имеют тогда, когда эта информация является "срочной", т. е. используется для улучшения "техники движения непосредственно во-время выполнения упражнения, или при последующих повторениях его (В. С. Фарфель).Интеграция в центральной нервной системе афферентных и других факторов, предшествующих программированию движенияДвигательный акт на всех этапах подготовки и выполнения связан с интеграцией в ЦНС афферентных и других факторов. П. К. Анохин выделяет четыре основных фактора: 1) мотивацию, 2) память, 3) обстановочную информацию и 4) пусковую информацию.В трудовой и спортивной деятельности людей особенно большое значение имеют различного рода социально обусловленные виды мотивации. Благодаря следам в нервной системе (памяти) предшествующий опыт оказывает сильнейшее влияние на оценку любых событий и ситуаций. Большую роль в процессе интеграции играет обстановочная информация. Информация об обстановке, поступающая из окружающей среды, и о состоянии различных функций организма является, несомненно, весьма существенным компонентом правильного программирования в ЦНС различных действий.Наконец, существенное значение имеет пусковая направляющая, т. е. сигналы, какими в спорте являются выстрел, звук свистка, движение флажка, команда и др. Однако многие пусковые раздражители" требующие ответных двигательных актов, весьма сложны; они представляют собой не единичный сигнал, а ситуацию определенного характера. Это всегда сильно затрудняет афферентный синтез. Например, в разных Видах единоборства и спортивных игр новые действия нужно начинать многократно. При этом начало и характер ответных движений определяются не каким-либо отдельным сигналом, а всей создавшейся ситуацией, т. е. совокупностью многих (в ряде случаев десятков и даже сотен) раздражителей. При выполнении разных физических упражнений использование информации, получаемой из внутренней и внешней среды путем обратных связей, имеет специфические особенности. При медленном выполнении двигательных актов обратные связи способствуют корригированию данного движения или какой-либо его фазы. При сложных многофазных движениях, которые выполняются быстро (например, гимнастических), обратные связи играют меньшую роль в текущей коррекции в результате недостатка времени. Наконец, при очень кратковременных движениях (в частности, баллистических - метаниях, бросках) обратные связи могут корригировать длительный акт только при его повторениях.Программирование двигательного акта с учетом состояния исполнительных приборовИнтеграция таких факторов, как па

Двигательная память

Автоматизация движений

Спортивная техника и энергетическая экономичность выполнения физических упражнений

Физиологическое обоснование принципов обучения спортивной технике

Глава 6. Влияние температуры и влажности воздуха на спортивную работоспособность

Физические механизмы теплоотдачи в условиях повышения температуры и влажности воздуха

Физиологические механизмы усиления теплоотдачи в условиях повышенных температуры и влажности воздуха

Тепловая адаптация (акклиматизация)

Питьевой режим

Спортивная деятельность в условиях пониженной температуры воздуха (холода)

Глава 7. Спортивная работоспособность в условиях пониженного атмосферного давления (среднегорья и при смене поясно-климатических условий

Острые физиологические эффекты пониженного атмосферного давления

Горная акклиматизация (адаптация к высоте)

Спортивная работоспособность в среднегорье и после возвращения на уровень моря

Смена поясно-климатических условий

Глава 8. Физиология плавания

Механические факторы

Максимальное потребление кислорода

Кислород транспортная система

Локальные (мышечные) факторы

Терморегуляция

Глава 9. Физиологические особенности спортивной тренировки женщин

Зависимость функциональных возможностей организма от размеров тела

Силовые, скоростно-силовые и анаэробные возможности женщин

Аэробная работоспособность (выносливость) женщин Максимальное потребление кислорода До периода полового. созревания, когда различия в размерах и составе тела между мальчиками и девочками минимальны, МПК тоже почти одинаково. У молодых мужчин оно в среднем на 20- 30% больше, чем у женщин того же возраста. По мере старения различия в МПК между мужчинами и женщинами становятся меньше (рис.90).Разница между МПК у женщин и мужчин снижается примерно до 15-20%, когда оно приведено к весу тела. В 20-30 лет МПК на 1 кг веса тела у женщин составляет в среднем 35-40 мл/кг*мин, а у мужчин - 45-50 мл/кг*мин. Еще меньше разница" когда МПК относят к весу тощей массы тела, поскольку жировая ткань является метаболически неактивной и почти не потребляет кислорода. Различия в МПК между женщинами и мужчинами практически исчезают, если МПК соотносят с активной мышечной массой.Среди мужчин и женщин одного возраста возможны значительные индивидуальные вариации в величинах МПК. У физически более подготовленных женщин МПК такое же, как у физически менее подготовленных мужчин. В группе не занимающихся спортом величины МПК примерно у 75% женщин совпадают с величинами МПК у 50% мужчин.У спортсменок - представительниц видов спорта на выносливость МПК существенно больше, чем у других спортсменок, а тем более у незанимающихся спортом, как и МПК на 1 кг веса тела (у рядовых спортсменок в среднем 55-60 мл/кг*мин, а у наиболее выдающихся, особенно у лыжниц, - 70- 75 мл/кг*мин). Однако в среднем разница в МПК между спортсменками и спортсменами больше, чем между нетренированными женщинами и мужчинами. МПК, отнесенное к весу тела, у женщин-спортсменок на 20-25% ниже, чем у мужчин-спортсменов (у нетренированных эта разница составляет около 15-2.0%). Даже при отнесении к весу тощей массы тела МПК у ведущих женщин-марафонцев на 8,6% меньше, чем у мужчин (соответственно 76,5 и 96,6 мл/кг*мин). У финских лыжниц и лыжников - членов национальной команды разница составляет в среднем лишь 3,7% (у женщин - 86,4, у мужчин - 89,8% мл/кг тощей массы тела мин).Приведенные данные показывают, что у женщин по сравнению с мужчинами максимальная аэробная производительность (мощность) ниже, что предопределяет и более низкие результаты женщин в видах спорта, требующих проявления выносливости. Это, в частности, объясняет относительное снижение рекордных женских результатов по сравнению с мужскими по мере увеличения дистанции. Максимальные возможности кислород-транспортной системы Более низкое МПК у женщин обусловлено сниженными кисло-родтранспортными возможностями женского организма. Максимальное количество кислорода, которое может транспортироваться артериальной кровью, у женщин меньше, чем у мужчин. Это различие связано с тем, что у женщин меньше объем циркулирующей крови, концентрация гемоглобина в крови, АВР-О2, объем сердца, максимальный сердечный выброс (табл. 24)Таблица 24. Средние показатели крови в покое и при максимальной работе у молодых мужчин и женщин

Менструальный цикл и физическая работоспособность

Глава 10. Физиологические особенности спортивной тренировки детей школьного возраста

Индивидуальное развитие и возрастная периодизация

Возрастные особенности физиологических функций и систем

Развитие движений и формирование двигательных (физических) качеств

Физиологическая характеристика юных спортсменов

Глава 11. Общие физиологические закономерности (принципы) занятий физической культурой и спортом

Два основных функциональных эффекта тренировки

Пороговые тренирующие нагрузки

Специфичность тренировочных эффектов

Обратимость тренировочных эффектов

Тренируемость



Так, у занимающихся физической культурой снижение частоты тренировок до двух раз в неделю позволяло поддерживать (но не повышать) величину МПК и другие (но не все) функциональные показатели тренировочных эффектов на относительно постоянном уровне. Снижение частоты тренировок до одного, раза в неделю лишь задерживало, но не предотвращало исчезновения положительных тренировочных эффектов.


Тренируемость



Тренируемость - это свойство живого организма изменять свои функциональные возможности под влиянием систематической тренировки. Оно характеризует восприимчивость человека к физической тренировке, его способность повышать свои специфические функциональные возможности под влиянием систематической специфической физической тренировки. Количественно тренируемость (степень тренируемости) может оцениваться величиной тренировочных эффектов: чем больше они в ответ на данную тренировку, тем, следовательно, выше тренируемость.

Тренируемость значительно отличается у людей разного пола и возраста: одна и та же тренировка вызывает у них неодинаковые эффекты.- И даже в пределах одной и той же возрастно-половой группы имеются очень большие индивидуальные вариации в тренируемости.

Тренируемость специфична, как и специфичны тренировочные эффекты. Например, одни люди могут проявлять высокую степень тренируемости при силовой тренировке, но не обнаруживать ее при тренировке выносливости. Другие, наоборот, обладают повышенной восприимчивостью к тренировке выносливости, но. не имеют значительного прироста мышечной силы в ответ на силовую тренировку.

Одинаковая тренировка может вызывать неодинаковые эффекты у разных людей не только из-за различий в тренируемости. Один способ тренировки какого-то качества (повышения спортивного результата в определенном упражнении) оказывается более эффективным для одних людей, иной способ тренировки - для других. Следовательно, применение одинаковой тренировки может в разной степени выявлять тренируемость к данному виду физической деятельности у разных людей.

У людей одной возрастно-половой группы степень тренируемости в значительной мере определяется исходным (предтренировочным) уровнем функциональных показателей (спортивного результата). Разные показатели, характеризующие функциональные возможности разных органов, систем, механизмов и функциональную подготовленность (тренированность) организма в целом, изменяются неодинаково под влиянием тренировки. Однако общее правило состоит в том, это изменение этих показателей тем больше, чем ниже их исходный (предтренировочный) уровень.
Степень тренируемости человека тем выше, чем ниже уровень его тренированности (функциональной подготовленности).

Так, величина прироста МПК в результате тренировки выносливости находится в обратной зависимости от его исходного (предтренировочного) уровня: чем ниже исходное МПК, тем больше оно- может увеличиваться под влиянием тренировок выносливости (рис. 102).

По величинетгскорости развития тренировочных эффектов выделяются четыре варианта тренируемости.

  1. Высокая быстрая тренируемость: большие эффекты, которые наиболее быстро нарастают в начальном периоде систематических тренировок, а затем изменяются мало, медленно (асимптотически) приближаясь к "уровню насыщения" (максимально возможным тренировочным эффектам).

  2. Высокая медленная тренируемость: большие тренировочные эффекты, нарастающие постепенно, медленно.

  3. Низкая быстрая тренируемость: небольшие тренировочные эффекты, которые нарастают быстро и проявляются уже после относительно короткого периода систематических тренировок, мало изменяясь в дальнейшем.

  4. Низкая медленная тренируемость: небольшие тренировочные эффекты, которые нарастают медленно в процессе систематических тренировок.

Как уже отмечалось, степень тренируемости в большой мере зависит от исходного уровня физиологических функций организма. Этот уровень определяется образом жизни человека, в частности степенью физической активности, характером питания, предшествующей тренировкой. Однако существеннейшую роль в определении функциональных возможностей человека, а также максимально возможной степени их изменения под влиянием тренировки, т. е. тренируемости, играют наследственно предопределенные, генетические, факторы, объединяемые понятием генотип.

Одним из наиболее широко используемых подходов для изучения роли наследственных факторов служит сравнение определенных антропометрических, морфологических и функциональных показателей у однояйцовых (монозиготных), генетически идентичных, близнецов и у двуяйцовых (дизиготных), генетически неидентичных, близнецов. Такое сравнение позволяет вычислять коэффициент наследственности (H) и по его величине судить о степени зависимости данного признака (показателя) от генотипа. Если коэффициент наследственности равен 1,0, наследственность может рассматриваться как единственная причина, определяющая индивидуальную вариативность данного признака (показателя). Если коэффициент наследственности

лежит в интервале между нулем и единицей, значит, признак отчасти подвержен влиянию срёдового фактора, а отчасти обусловлен наследственностью.

Роль наследственности в определении уровня различных физиологических функций неодинакова. Прежде всего целый ряд функциональных показателей у человека в той или иной степени зависит от размеров и формы тела, отдельных его звеньев и размеров некоторых внутренних органов, например сердца, легких, диаметра аорты и т. д. Многие антропометрические и морфологические признаки находятся под генетическим контролем и потому предопределяют наследственную обусловленность связанных с ними функциональных характеристик.

Функции внешнего дыхания в той или иной степени генетически предопределены. Это относится к таким показателям внешнего дыхания, как общая емкость легких, остаточный и резервный объемы, жизненная емкость легких (рис. 103, Б), что, впрочем, может быть обусловлено связью этих показателей с размерами тела. Частота дыхания, а также относительные легочные объемы и емкости (приведенные к массе тела) вообще не обнаруживают зависимости от генотипа. Вместе с тем длительность задержки дыхания, особенности реакции внешнего дыхания на гипоксию (изокапническую гипоксию) находятся под заметным влиянием генетических факторов.

Функции сердечнососудистой системы испытывают Несомненное (но неодинаковое для разных показателей) влияние наследственных факторов. ЧСС покоя не очень подвержена этому влиянию, хотя у нетренированных людей ЧСС покоя ниже 60 уд/мин, как правило, наследственно обусловлена. Максимальная ЧСС генетически предопределена (коэффициент наследственности 0,9) без различий для пола и возраста.

Неясно влияние генетических факторов на величины сердечного выброса и систолического объема крови, хотя общий объем сердца выявляет некоторую наследственную зависимость. Наследственные факторы в значительной мере определяют толщину (массу) левого желудочка (коэффициент наследственности 0,55-0,70) и особенности сосудистой сети (капилляризации) сердца, толщины стенок коронарных артерий, их распределения в стенках миокарда. Интересно, что тренировка выносливости повышает сходство размеров сердца у генетически идентичных близнецов.

Разноречивы данные о наследственной зависимости уровня артериального давления в условиях покоя. По некоторым данным, у людей с нормальным артериальным давлением общий генетический эффект составляет 50-60% в отношении систолического давления и до 40% в отношении диастолического.


Композиция мышц, т. е. соотношение в них медленных и быстрых мышечных волокон, генетически предопределена. Так, соотношение быстрых и медленных волокон в одних и тех же мышцах у монозиготных близнецов практически одинаково. Коэффициент наследственности для процента медленных (или быстрых) волокон равен 0,99 у мужчин и 0,92 у женщин. Вместе с тем процентное соотношение двух подтипов быстрых мышечных волокон (II-A и II-В) не обладает таким "родственным" сходством, что указывает на возможное взаимопревращение их под влиянием средовых факторов, в частности в результате тренировки.

Число, размеры и относительное содержание (плотность) митохондрий, активность мышечных ферментов, мало зависят или вообще не зависят от генотипа и весьма чувствительны к средовым влияниям (тренировке).

Мышечная сила, выраженная в абсолютных показателях (Ньютонах), мало зависит от наследственных факторов. Вместе с тем относительная "общая сила" (на массу тела) имеет довольно высокий коэффициент наследственности (0,6), что свидетельствует об определенной обусловленности данного функционального признака генетическими механизмами.

Мышечная мощность обнаруживает очень большую зависимость от генотипа. Так, максимальная мощность, определяемая тестом Маргария у монозиготных и дизиготных близнецов, имеет коэффициент наследственности почти 0,98.

Генетическая обусловленность содержания быстрых мышечных волокон, относительной мышечной силы, скорости двигательной реакции, максимальной частоты и скорости движений, максимальных анаэробной мощности и емкости лактацидной энергетической системы в значительной мере определяет врожденный характер уровня скоростно-силовых способностей человека. "Великими спринтерами рождаются",

Максимальная аэробная мощность (максимальное потребление кислорода) в наибольшей степени наследственно обусловлена. Высокие показатели МГЩ регистрируются не только у высокотренированных представителей видов спорта на выносливость, но и у ряда людей, не занимающихся серьезно спортом, у дизиготных близнецов выявляется более высокая внутрипарная вариабельность МПК по сравнению с монозиготными близнецами (при полном совпадении МПК У близнецов каждой пары точки лежат на наклонной линии). Врожденная предопределенность МПК (на 93,4% у мужчин и на 95,9% у мужчин и женщин вместе) мало подвержена влияниям возраста и пола. Субмаксималвная аэробная работоспособность также в большой мере предопределяется генетическим фактором (коэффициент наследственности для показателя PWC170 около 0,9).


Генетическая обусловленность высокого МПК, многих физиологических факторов и механизмов, определяющих повышенные аэробные (кислородтранспортные) возможности организма, увеличенного содержания медленных мышечных волокон предопределяет большие возможности организма в достижении высоких результатов в видах спорта, требующих проявления выносливости. "Великими стайерами рождаются".
Роль наследственности в определении степени тренируемости несомненна
У людей с разным генотипом одинаковые тренировки вызывают неодинаковые тренировочные эффекты, т. е. чувствительность организма к тренировке (тренируемость) в значительной мере зависит от генотипа.

Так, 10 пар монозиготных близнецов приняли участие в 20-недельной тренировке выносливости. При среднем повышении МПК. на 14% индивидуальные, вариации прироста были очень значительны - от 0 до 41%. Однако величина тренировочного эффекта (степень тренируемости) у близнецов каждой пары была весьма сходной.

Расчеты показывают, что около 50% индивидуальной вариативности в приросте МПК под влиянием тренировки выносливости" определяются генетическими особенностями тренирующихся, при этом лишь 20-30% зависит от исходного (предтренировочного). уровня МПК. Следовательно, примерно 70-80% величины тренировочных эффектов генетически зависимы, т. е. определяются наследственными особенностями организма.

Наследственность также влияет на общий уровень физической активности (подвижность) человека.

Так, у детей очень физически активных родителей высокая подвижность наблюдалась в 20% случаев, а у детей "обычных" родителей - лишь в 4% случаев. Отношение к тому или иному виду спортивной деятельности отличалось среди монозиготных близнецов лишь в 6% случаев, а среди дизиготных близнецов - в 85% случаев. Полное совпадение в выборе спортивной специализации, степени активности и достигнутых результатах наблюдалось у 70% пар монозиготных близнецов и лишь у 22% пар дизиготных близнецов.

Предел роста тренировочных эффектов у каждого человека генетически предопределен. Даже систематическая интенсивная физическая тренировка не может повысить функциональные возможности организма сверх предела, определяемого генотипом. Поэтому генетические факторы являются решающими в предсказании и достижении высоких спортивных результатов. Природные, генетически предопределенные аэробные возможности могут быть довольно устойчивыми несмотря на средовые (тренировочные) влияния. В частности, пределы роста МПК, вероятно, лимитированы индивидуальным генотипом, так что никакая тренировка не в состоянии преодолеть этот барьер.