Файл: Учебник для институтов физической культуры Коц Я. М. Оглавление Введение.rtf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 12.12.2023

Просмотров: 667

Скачиваний: 3

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Спортивная физиология

Учебник для институтов физической культуры

Общая физиологическая классификация физических упражнений

Физиологическая классификация спортивных упражнений

Глава 2. Динамика физиологического состояния организма при спортивной деятельности

Предстартовое состояние и разминка

Врабатывание, "мертвая точка", "второе дыхание"

Устойчивое состояние

Утомление

Восстановление

Глава 3. Физиологические основы мышечной силы и скоростно-силовых качеств (мощности)

Физиологические основы мышечной силы

Физиологические основы скоростно-силовых качеств (мощности)

Глава 4. Физиологические основы выносливости

Аэробные возможности организма и выносливость

Кислородтранспортная система и выносливость

Мышечный аппарат и выносливость

Глава 5. Физиологические основы формирования двигательных навыков и обучения спортивной технике

Условнорефлекторные механизмы как физиологическая основа формирования двигательных навыков

Роль афферентации (обратных связей) в формировании и сохранении двигательного навыка В сложном нервном механизме формирования двигательных что в и управления ими важное место принадлежит информации, получаемой из внешней среды и от различных частей тела и систем организма.Обратные связи и их роль в формировании и совершенствовании техники движений. Нервная система, вызывая через пусковые двигательные и вегетативные нервы какую-либо деятельность, благодаря наличию обратных связей сразу же начинает получать от управляемых органов (мышц, сердечнососудистой системы и т.д.). А также из внешней среды информацию о совершившемся действии. Сигналы обратных связей, являясь важнейшим фактором корреляции движений, поступают в ЦНС через органы чувств и поэтому называются также сенсорными коррекциями (Н.А. Бернштейн).Различают внутренние обратные связи, которые сигнализируют о характере работы мышц, сердца и других систем организма, и внешние, несущие информацию о деятельности из внешней среды (точность метания, направление движения мяча в футболе, изменение положения тела противника в борьбе и т.д.).Внутренние обратные связи при выполнении физических упраж нений осуществляются преимущественно через двигательную (проприоцептивную), вестибулярную и интероцептивную сенсорные системы, внешние - через зрительную, слуховую и тактильную.Существенное значение для совершенствования техники движений имеет и так называемая сторонняя информация, получаемая от тренера и других лиц в результате наблюдения за Движениями. Помимо наблюдений в настоящее время широко используется различного рода инструментальная техника, гензомет-Рия, электромиография, цикло- или киносъемки, видеомагнитофонные записи и т. д., позволяющие оценивать пространственные и временные параметры двигательного акта. Особую ценность полученные данные имеют тогда, когда эта информация является "срочной", т. е. используется для улучшения "техники движения непосредственно во-время выполнения упражнения, или при последующих повторениях его (В. С. Фарфель).Интеграция в центральной нервной системе афферентных и других факторов, предшествующих программированию движенияДвигательный акт на всех этапах подготовки и выполнения связан с интеграцией в ЦНС афферентных и других факторов. П. К. Анохин выделяет четыре основных фактора: 1) мотивацию, 2) память, 3) обстановочную информацию и 4) пусковую информацию.В трудовой и спортивной деятельности людей особенно большое значение имеют различного рода социально обусловленные виды мотивации. Благодаря следам в нервной системе (памяти) предшествующий опыт оказывает сильнейшее влияние на оценку любых событий и ситуаций. Большую роль в процессе интеграции играет обстановочная информация. Информация об обстановке, поступающая из окружающей среды, и о состоянии различных функций организма является, несомненно, весьма существенным компонентом правильного программирования в ЦНС различных действий.Наконец, существенное значение имеет пусковая направляющая, т. е. сигналы, какими в спорте являются выстрел, звук свистка, движение флажка, команда и др. Однако многие пусковые раздражители" требующие ответных двигательных актов, весьма сложны; они представляют собой не единичный сигнал, а ситуацию определенного характера. Это всегда сильно затрудняет афферентный синтез. Например, в разных Видах единоборства и спортивных игр новые действия нужно начинать многократно. При этом начало и характер ответных движений определяются не каким-либо отдельным сигналом, а всей создавшейся ситуацией, т. е. совокупностью многих (в ряде случаев десятков и даже сотен) раздражителей. При выполнении разных физических упражнений использование информации, получаемой из внутренней и внешней среды путем обратных связей, имеет специфические особенности. При медленном выполнении двигательных актов обратные связи способствуют корригированию данного движения или какой-либо его фазы. При сложных многофазных движениях, которые выполняются быстро (например, гимнастических), обратные связи играют меньшую роль в текущей коррекции в результате недостатка времени. Наконец, при очень кратковременных движениях (в частности, баллистических - метаниях, бросках) обратные связи могут корригировать длительный акт только при его повторениях.Программирование двигательного акта с учетом состояния исполнительных приборовИнтеграция таких факторов, как па

Двигательная память

Автоматизация движений

Спортивная техника и энергетическая экономичность выполнения физических упражнений

Физиологическое обоснование принципов обучения спортивной технике

Глава 6. Влияние температуры и влажности воздуха на спортивную работоспособность

Физические механизмы теплоотдачи в условиях повышения температуры и влажности воздуха

Физиологические механизмы усиления теплоотдачи в условиях повышенных температуры и влажности воздуха

Тепловая адаптация (акклиматизация)

Питьевой режим

Спортивная деятельность в условиях пониженной температуры воздуха (холода)

Глава 7. Спортивная работоспособность в условиях пониженного атмосферного давления (среднегорья и при смене поясно-климатических условий

Острые физиологические эффекты пониженного атмосферного давления

Горная акклиматизация (адаптация к высоте)

Спортивная работоспособность в среднегорье и после возвращения на уровень моря

Смена поясно-климатических условий

Глава 8. Физиология плавания

Механические факторы

Максимальное потребление кислорода

Кислород транспортная система

Локальные (мышечные) факторы

Терморегуляция

Глава 9. Физиологические особенности спортивной тренировки женщин

Зависимость функциональных возможностей организма от размеров тела

Силовые, скоростно-силовые и анаэробные возможности женщин

Аэробная работоспособность (выносливость) женщин Максимальное потребление кислорода До периода полового. созревания, когда различия в размерах и составе тела между мальчиками и девочками минимальны, МПК тоже почти одинаково. У молодых мужчин оно в среднем на 20- 30% больше, чем у женщин того же возраста. По мере старения различия в МПК между мужчинами и женщинами становятся меньше (рис.90).Разница между МПК у женщин и мужчин снижается примерно до 15-20%, когда оно приведено к весу тела. В 20-30 лет МПК на 1 кг веса тела у женщин составляет в среднем 35-40 мл/кг*мин, а у мужчин - 45-50 мл/кг*мин. Еще меньше разница" когда МПК относят к весу тощей массы тела, поскольку жировая ткань является метаболически неактивной и почти не потребляет кислорода. Различия в МПК между женщинами и мужчинами практически исчезают, если МПК соотносят с активной мышечной массой.Среди мужчин и женщин одного возраста возможны значительные индивидуальные вариации в величинах МПК. У физически более подготовленных женщин МПК такое же, как у физически менее подготовленных мужчин. В группе не занимающихся спортом величины МПК примерно у 75% женщин совпадают с величинами МПК у 50% мужчин.У спортсменок - представительниц видов спорта на выносливость МПК существенно больше, чем у других спортсменок, а тем более у незанимающихся спортом, как и МПК на 1 кг веса тела (у рядовых спортсменок в среднем 55-60 мл/кг*мин, а у наиболее выдающихся, особенно у лыжниц, - 70- 75 мл/кг*мин). Однако в среднем разница в МПК между спортсменками и спортсменами больше, чем между нетренированными женщинами и мужчинами. МПК, отнесенное к весу тела, у женщин-спортсменок на 20-25% ниже, чем у мужчин-спортсменов (у нетренированных эта разница составляет около 15-2.0%). Даже при отнесении к весу тощей массы тела МПК у ведущих женщин-марафонцев на 8,6% меньше, чем у мужчин (соответственно 76,5 и 96,6 мл/кг*мин). У финских лыжниц и лыжников - членов национальной команды разница составляет в среднем лишь 3,7% (у женщин - 86,4, у мужчин - 89,8% мл/кг тощей массы тела мин).Приведенные данные показывают, что у женщин по сравнению с мужчинами максимальная аэробная производительность (мощность) ниже, что предопределяет и более низкие результаты женщин в видах спорта, требующих проявления выносливости. Это, в частности, объясняет относительное снижение рекордных женских результатов по сравнению с мужскими по мере увеличения дистанции. Максимальные возможности кислород-транспортной системы Более низкое МПК у женщин обусловлено сниженными кисло-родтранспортными возможностями женского организма. Максимальное количество кислорода, которое может транспортироваться артериальной кровью, у женщин меньше, чем у мужчин. Это различие связано с тем, что у женщин меньше объем циркулирующей крови, концентрация гемоглобина в крови, АВР-О2, объем сердца, максимальный сердечный выброс (табл. 24)Таблица 24. Средние показатели крови в покое и при максимальной работе у молодых мужчин и женщин

Менструальный цикл и физическая работоспособность

Глава 10. Физиологические особенности спортивной тренировки детей школьного возраста

Индивидуальное развитие и возрастная периодизация

Возрастные особенности физиологических функций и систем

Развитие движений и формирование двигательных (физических) качеств

Физиологическая характеристика юных спортсменов

Глава 11. Общие физиологические закономерности (принципы) занятий физической культурой и спортом

Два основных функциональных эффекта тренировки

Пороговые тренирующие нагрузки

Специфичность тренировочных эффектов

Обратимость тренировочных эффектов

Тренируемость


Утомление


Процесс утомления - это совокупность изменений, происходящих в различных органах, системах и организме в целом, в период выполнения физической работы и приводящих, в конце концов, к невозможности ее продолжения. Состояние утомления характеризуется вызванным работой временным снижением работоспособности, которое проявляется в субъективном ощущении усталости. В состоянии утомления человек не способен поддерживать требуемый уровень интенсивности и (или) качества (техники выполнения) работы или вынужден отказаться от ее продолжения.

Локализация и механизмы утомление

Степень участия тех или иных физиологических систем в выполнении упражнений разного характера и мощности неодинакова. В выполнении любого упражнения можно выделить основные, ведущие, наиболее загружаемые системы, функциональные возможности которых определяют способность человека выполнить данное упражнение на требуемом уровне интенсивности и (или) качества. Степень загруженности этих систем по отношению к их максимальным возможностям определяет предельную продолжительность выполнения данного упражнения, т. е. период наступления состояния утомления. Таким образом, функциональные возможности ведущих систем не только определяют, но и лимитируют интенсивность и предельную продолжительность и (или) качество выполнения данного упражнения.

При выполнении разных упражнений причины утомления неодинаковы. Рассмотрение основных причин утомления связано с двумя основными понятиями. Первое понятие - локализация утомления, т. е. выделение той ведущей системы (или систем), функциональные изменения в которой и определяют наступление состояния утомления. Второе понятие - механизмы утомления, т. е. те конкретные изменения в деятельности ведущих функциональных систем, которые обусловливают развитие утомления.

По локализации утомления можно, по существу, рассматривать три основные группы систем, обеспечивающих выполнение любого упражнения:

  1. регулирующие системы - центральная нервная система, вегетативная нервная система и гормонально-гуморальная система;

  2. система вегетативного обеспечения мышечной Деятельности - системы дыхания, крови и кровообращения;

  3. исполнительная система - двигательный (периферический нервно-мышечный) аппарат.


При выполнении любого упражнения происходят функциональные изменения в состоянии нервных центров, управляющих мышечной деятельностью и регулирующих ее вегетативное обеспечение. При этом наиболее "чувствительными" к утомлению являются корковые нервные центры. Проявлениями центрально-нервного утомления являются нарушения в координации функций (в частности, движений), возникновение чувства усталости. Как писал И.М. Сеченов (1903), "источник ощущения усталости помещается обыкновенно в работающие мышцы; я же помещаю его... исключительно в центральную нервную систему".

Механизмы центрально-нервного утомления остаются еще во многом невыясненными. Согласно теории И.П. Павлова, утомление нервных клеток есть проявление запредельного, охранительного торможения, возникающего вследствие их интенсивной (продолжительной) активности. Предполагается, в частности, что такое торможение возникает во время работы в результате интенсивной проприоцептивной импульсации от рецепторов работающих мышц, суставов связок и капсул движущихся частей тела, достигающей всех уровней центральной нервной системы, вплоть до коры головного, мозга.

Утомление может быть связано с изменениями в деятельности вегетативной нервной системы и желез внутренней секреции.

Роль, последних особенно велика при длительных упражнениях (А.А. Виру). Изменения в деятельности этих систем могут вести к нарушениям в регуляции вегетативных функций, энергетического обеспечения мышечной деятельности и т. д.

Причиной развития утомления могут служить многие изменения, в деятельности систем вегетативного обеспечения, прежде всего дыхательной и сердечнососудистой систем. Главное следствие таких- изменений - снижение кислородтранспортных возможностей организма работающего человека.

Утомление может быть связано о изменениями в самом исполнительном аппарате - в.работающих мышцах. При этом мышечное (периферическое) утомление является результатом изменений, возникающих либо в самом сократительном аппарате мышечных волокон, либо в нервно-мышечных синапсах, либо в системе электромеханической связи мышечных волокон. При любой из этих локализаций мышечное утомление проявляется в снижении сократительной способности мышц.

Еще в прошлом веке были сформулированы три основных механизма мышечного утомления:

1) истощение энергетических ресурсов,



2) засорение или отравление накапливающимися продуктами распада энергетических веществ,

3) задушение в результате недостаточного поступления кислорода. В настоящее время выяснено, что роль этих механизмов в развитии утомления неодинакова при выполнении разных упражнений.

При выполнении анаэробных упражнений очень важную роль в развитии мышечного утомления играет истощение внутримышечных запасов фосфагенов, особенно в упражнениях максимальной и околомаксимальной мощности. К концу их выполнения содержание АТФ снижается на 30-50%, а КФ-на 80-90% от исходного уровня. Поскольку для этих упражнений фосфагены служат ведущим энергетическим субстратом, их истощение ведет к невозможности поддерживать требуемую мощность мышечных сокращений. Чем ниже мощность нагрузки, тем меньше снижается содержание фосфагенов в рабочих мышцах к концу работы и тем меньшую роль играет это снижение в развитии мышечного утомления. При выполнении аэробных упражнений снижения запасов внутримышечных фосфагенов не происходит или оно незначительно, поэтому данный механизм не играет какой-либо роли в развитии утомления.

При выполнении упражнений околомаксимальной и особенно субмаксимальной анаэробной мощности, а также максимальной аэробной мощности ведущую или существенную роль в энергообеспечении рабочих мышц играет анаэробный гликолиз (гликогенолиз). В результате этой реакции образуется большое количество молочной кислоты, что ведет к повышению концентрации водородных ионов (снижению рН) в мышечных клетках. В результате тормозится скорость гликолиза и соответственно скорость энергопродукции, необходимая для поддержания требуемой мощности мышечных сокращений. Таким образом, накопление молочной кислоты (снижение рН) в рабочих мышцах является ведущим механизмом мышечного утомления при выполнении упражнений субмаксимальной анаэробной мощности и очень существенным - при выполнении упражнений околомаксимальной анаэробной и максимальной аэробной мощности.

За время выполнения упражнений максимальной анаэробной мощности мышечный гликогенолиз не успевает развернуться, поэтому накопление лактата в мышечных клетках невелико. Чем ниже мощность нагрузки в упражнениях аэробной мощности, тем меньше роль анаэробного гликолиза в мышечной знергопродукции и соответственно тем ниже содержание лактата в мышцах в конце работы. Следовательно, как й при выполнении упражнений максимальной анаэробной мощности, так и при выполнении упражнений немаксимальной аэробной мощности не происходит значительного накопления лактата в мышцах, и потому этот механизм не играет сколько-нибудь значительной роли в развитии мышечного утомления.


Важную, а для некоторых упражнений решающую роль в развитии утомления играет истощение углеводных ресурсов, в первую очередь гликогена в рабочих мышцах и печени. Мышечный гликоген служит основным субстратом (не считая фосфагенов) для энергетического обеспечения анаэробных и максимальных аэробных упражнений. При выполнении их он расщепляется почти исключительно анаэробным путем с образованием лактата, из-за тормозящего действия которого (снижения рН) высокая скорость расходования мышечного гликогена быстро уменьшается, что в конце концов предопределяет кратковременность таких упражнений. Поэтому расход мышечного гликогена при их выполнении невелик - до 30% от исходного содержания - и не может рассматриваться как важный фактор мышечного утомления.

В околомаксймальных и в субмаксимальных аэробных упражнениях углеводы (мышечный, гликоген и глюкоза крови) служат основными энергетическими субстратами рабочих мышц, используемыми в окислительных реакциях. В процессе выполнения субмаксимальных аэробных упражнений мышечный гликоген расходуется особенно значительно, так что момент отказа от продолжения их часто совпадает с почти полным или даже полным расходованием гликогена в основных рабочих мышцах. Это дает основание считать" что истощение мышечного гликогена служит ведущим механизмом утомления при выполнении данных упражнений.

Значение углеводных ресурсов организма для субмаксимальной аэробной работоспособности доказано в специальных исследованиях. Испытуемые выполняли в них упражнение субмаксимальной аэробной мощности (на уровне около 75% от МПК) один раз до отказа при нормальном исходном содержании гликогена в мышцах и печени на фоне обычного, смешанного пищевого рациона, (контрольное упражнение). В среднем предельная продолжительность упражнения составляла около 90 мин. В конце работы содержание гликогена в мышцах падало почти до нуля - "истощающая" гликоген нагрузка. Это же упражнение испытуемые, выполняли повторно через 3 дня. В одних случаях на протяжении этих 3 дней пищевой рацион не содержал углеводов (белково-жировой рацион). За эти дни восстановления израсходованного гликогена в мышцах (и печени) почти не происходило. Поэтому упражнение повторно выполнялось при низком содержании гликогена. Предельная продолжительность его снизилась в среднем до 60 мин,

В других случаях на протяжении 3 дней после "истощающей" гликоген нагрузки пищевой рацион был с повышенным содержанием углеводов - 80-90% суточного калоража обеспечивалось углеводами (против 40% в смешанном рационе). В результате содержание гликогена в. мышцах (и печени) в 1,5-3 раза превышало обычное для данного человека.


Такая комбинация предварительной "истощающей" гликоген нагрузки и последующего трехдневного усиленного углеводного рациона, вызывающая значительное повышение содержания гликогена в рабочих мышцах и печени, получила название метода углеводного, насыщения - МУН (Я.М. Коц). Интересно, что само по себе усиленное углеводное питание без предварительного истощения гликогена приводит лишь к. небольшому повышению его содержания в мышцах.

Применение МУН дает значительное увеличение предельной продолжительности работы - в среднем до 120 мин. Таким образом, субмаксимальная аэробная работоспособность находится в прямой зависимости, от исходных запасов гликогена в мышцах и печени.

В энергообеспечении аэробных упражнений более низкой мощности (средней и ниже) значительную роль наряду с углеводами играют жиры (их относительная роль тем больше, чем ниже мощность упражнения). В конце выполнения таких упражнений содержание гликогена в рабочих мышцах снижено существенно, но не до такой степени, как при субмаксимальных аэробных упражнениях. Поэтому истощение его не может рассматриваться как ведущий фактор утомления. И все же это весьма важный фактор, так как по мере уменьшения содержания гликогена в рабочих мышцах они все в большей степени используют глюкозу крови, которая, как известно, служит единственным энергетическим источником для нервной системы. Из-за увеличения использования глюкозы работающими мышцами уменьшаются запасы гликогена в печени, расщепление которого обеспечивает поступление глюкозы в кровь. Поэтому по мере выполнения упражнений средней аэробной мощности снижается содержание глюкозы в крови (развивается гипогликемия), что может привести к нарушению деятельности ЦНС и утомлению. Чем выше исходное содержание гликогена в мышцах и печени, тем позднее развивается гипогликемия и наступает утомление при выполнении таких упражнений. Прием углеводов (глюкозы) на дистанции предотвращает или отдаляет эти явления. Вместе с тем если углеводы принимаются до старта, то повышается выброс инсулина в кровь и снижается концентрация глюкозы во время работы, т. е. более быстро развивается гипогликемия и наступает утомление.
Утомление при выполнении различных спортивных упражнений

Для различных упражнений характерна специфическая комбинация ведущих систем (локализации) и механизмов утомления.