Файл: В настоящее время ускорение научнотехнического прогресса диктует.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 02.02.2024

Просмотров: 226

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


2. Резервные и другие защиты:

- Для резервирования отключения многофазных к.з. на шинах НН, а также для резервирования основных защит трансформатора – максимальная токовая защита с комбинированным пуском по напряжению, установленная на стороне ВН. Защита содержит три реле тока типа РТ-40 (КА3 - КА5) и реле времени КТ1. Комбинированный пуск выполнен тремя фильтрами-реле напряжения обратной последовательности типа РНФ-1М (KVZ1- KVZ3) и тремя минимальными реле напряжения типа РН-54/160 (KV1- KV3).

- Для резервирования отключения многофазных к.з. на стороне CН – максимальная токовая защита с комбинированным пуском по напряжению, установленная на стороне CН. Защита выполнена с применением комплекта КЗ-12 (АК1) и дополнительного реле времени КТ2. Комплект защиты КЗ-12 содержит два реле тока КА1, КА2 реле времени КТ1. Комбинированный пуск выполнен фильтром-реле напряжения обратной последовательности KVZ1и минимальным реле напряжения типа KV1.

- От многофазных к.з. на шинах НН, а также для резервирования отключения к.з. на элементах, присоединенных к этим шинам,- максимальные токовые защиты с комбинированным пуском по напряжению, установленные на ответвленниях к секциям шин НН. Защита выполнена с использованием реле тока типа РТ-40 (КА6, КА7) и реле времени КТ3, КТ5. Комбинированный пуск выполнен фильтром-реле напряжения обратной последовательности (KVZ2, KVZ3) и минимальным реле напряжения типа (KV2 ,KV3).

- Для резервирования отключения внешних к.з. на землю, а также частичного резервирования основных защит трансформатора – одноступенчатая токовая ненаправленная защита нулевой последовательности с реле тока типа РТ-40 (КА13) и реле времени КТ8, КТ9.

- От повреждений в шкафах КРУН – 10кВ, имеющих высоковольтные выключатели – защиты при дуговых к.з..

- От симметричных перегрузок – МТЗ с тремя реле тока типа РТ-40 (КА10, КА11, КА12 ) установленные на сторонах ВН,СН,НН и реле времени КТ7.
5.2.5 Защита линий 10кВ

На всех отходящих от КРУН 10 кВ линиях, как кабельных, так и воздушных предусматривается три ступени токовой защиты:

  1. Токовая отсечка без выдержки времени. Селективное действие 1 ступени Т.О. достигается тем, что её ток срабатывания принимается бо´льшим максимального тока к.з., проходящего через защиту при повреждении вне защищаемого элемента. Чувствительность защиты определяется длиной защищаемой зоны (менее 50% линии) и коэффициентом чувствительности KIr ≥2.

  2. Токовая отсечка с выдержкой времени. Она обеспечивает защиту всей линии и сторону ВН приёмной КТП 10/0,4 кВ. Выдержка времени должна быть больше времени срабатывания этой отсечки на некоторое время Δt =0,3…0,6 с, называемое ступенью селективности. Достаточно, чтобы ток срабатывания 2ой ступени был больше максимального тока К.З., проходящего при повреждении в конце защищаемой зоны (80…90% линии).

  3. Максимальная токовая защита. Ток срабатывания отстраивается на ток К.З. за трансформатором приёмной КТП 10/0,4 кВ. коэффициент чувствительности KIIIr ≥1,5. Выдержка времени МТЗ на ступень больше, чем выдержка времени предыдущего участка (МТЗ трансформатора 10/0,4 кВ КТП).

  4. Защита от однофазных замыканий на землю выполнена на реле РУ-21/1 с применением тр-ра земляной защиты ТЗЛМ-10 с действием на сигнал.


Токовая защита отходящих линий выполнена в виде двухфазной двухрелейной схемы соединения в неполную звезду(рис.14). Для выполнения схемы вторичные обмотки трансформаторов тока, установленных в двух фазах, соединяются выводами Л2, реле тока присоединяется последовательно.

Рисунок 14 - Схема соединения трансформаторов тока и реле .

Из анализа поведения реле при различных видах короткого замыкания следует, что схема защиты реагирует на все виды коротких замыканий, за исключением замыканий на землю фазы, в которой трансформатор тока не установлен, поэтому применяется только для действия при многофазных повреждениях.




    1. 5.2.6 Автоматика ввода резерва (АВР.

Одной релейной защиты недостаточно для обеспечения надежности и бесперебойности электроснабжения. В этом также можно убедиться на примере рассмотренных схем электроснабжения. Шины распределительного пункта РП обычно выполняются в виде двух секций. Секционный выключатель при нормальной работе отключен. Каждая отходящая от шин линия электроснабжения потребителей связана только с определенной секцией. При повреждении одной из питающих РП линий и отключении ее релейной защитой электроснабжение потребителей соответствующей секции прекращается. Электроснабжение можно восстановить включением секционного выключателя устройством автоматического включения резерва (УАВР).

Устройства АВР выполняются как на постоянном, так и на переменном оперативном токе, и их схемы имеют некоторые различия, обусловленные видом этого тока и конструкцией привода выключателя.

Принцип осуществления команды на включение резервного питания при постоянном оперативном токе показан на рисунке 15. Нормально при включенных выключателях рабочего питания Q1, Q2 обмотка реле KLоднократности действия АВР

(РОД), имеющего задержку на возврат, обтекается током, и его контакт замкнут. После отключения выключателя Q1 или Q2 в схеме через контакт РОД подается команда на включение выключателя Q3. Одновременно цепь обмотки РОД размыкается и команда на включение существует лишь в течение времени замедления РОД на возврат, достаточного для надежного включения выключателя Q3.

Рисунок 15- Принцип работы АВР при неявном резерве.
В данном проекте выполнена схема АВР 10 кВ с воздействием на включение секционного выключателя при отключении одного из вводных (трансформаторных) выключателей 10 кВ.


6. Молниезащита понизительной подстанции



При проектировании зданий и сооружений системы электроснабжения необходимо учитывать и предотвращать возможность их поражения ударами молнии. Особенно это относится к открытым электроустановкам.

Молнии характеризуются большим разрушающим действием, объясняемым большими амплитудой, крутизной нарастания и интегралом тока.

В соответствии с Руководящими указаниями по защите электростанций и подстанций 3-500 кВ от прямых ударов молнии (ПУМ) и грозовых волн, набегающих с линий электропередачи, защите подлежат следующие объекты, расположенные на их территории:

а) открытые распределительные устройства (ОРУ), в том числе шинные мосты и гибкие связи, в том числе шинные мосты и гибкие связи;

б) здания машинного зала и закрытые распределительные устройства (ЗРУ);

в) здания маслохозяйства.

ОРУ станций и подстанций защищаются от ПУМ стержневыми молниеотводами и только для протяженных шинных мостов и гибких связей применяются тросовые молниеотводы.

Защита ОРУ осуществляется установкой стержневых молниеотводов на порталах подстанций или устройством отдельно стоящих стержневых молниеотводов со своими обособленными заземлителями.

Молниеотводы, установленные на порталах подстанций, дешевле отдельно стоящих молниеотводов, так как требуют меньше металла на изготовление. Они ближе располагаются к защищаемому оборудованию, поэтому эффективнее используется их защитная зона. Но при поражении портального молниеотвода ударом молнии с большой амплитудой и крутизной фронта импульса тока на молниеотводе и на портале значительно возрастает напряжение. Это напряжение может оказаться достаточным, чтобы вызвать «обратное» перекрытие изоляции ОРУ с заземленных элементов на токоведущие части подстанции.
Порядок расчета стержневых молниеотводов:

hа ≥ Д/8·p,

h=hа + hх – полная высота молниеотвода,

где hа – активная высота молниеотвода;

hх1=11,35 м, hх2=5,5 м – высота защищаемого объекта; р=1 при h ≤ 30 м,


Д=59 м – большая диагональ четырехугольника с молниеотводами в его вершинах.

hа ≥ 59/8·1 = 7,375 м. Принимаю 8,5 м.

h = 11,35 + 8,5 = 19,85 м. Принимаю 20 м.

Высоту молниеотвода от земли выбирают такой, чтобы защищаемые оборудование и конструкции попали в зону защиты молниеотвода, внутри которой с достаточной надежностью (в электроустановках 99,5% – зона защиты типа А) обеспечивалась бы защита зданий и сооружений от прямых ударов молнии.

Расчетная зона защиты одиночного стержневого молниеотвода высотой < 150 м представляет собой конус с высотой

hо = 0,85h;

hо = 0,85·20= 17 м;

и радиусами на уровне земли и уровне защищаемого оборудования

rо = (1,1 – 0,002h)h;

rх = (1,1 – 0,002h)(h – hх/0,85);

rо = (1,1 – 0,002·20)·20 = 21,2 м;

rх1 = (1,1 – 0,002·20)·(20 – 11,35/0,85)= 7,04 м.

rх2 = (1,1 – 0,002·20)·(20 – 5,5/0,85)= 14,3 м.

Два молниеотвода одинаковой высоты, находящихся друг от друга на расстоянии h1<3h (201=53<3·20=60) образуют общую зону защиты. Зона характеризуется между молниеотводами гребнем в виде ломаной линии; наинизшая точка этого гребня имеет высоту

hс = hо – (0,17 + 3·10 -4h)(L1 – h) rсх = rо (hс –hх)/hс

rс = rо

hс = 17 – (0,17 + 3·10 –4 ·20)(53 – 20) = 11,72 м

rсх1 = 21,2 (11,72 – 11,35) / 11,72 = 0,67 м

rсх2 = 21,2 (11,72 – 6) / 11,72 = 10,3 м

rс = 21,2 м

h1<3h (201=26<3·20=60)

hс = 17 – (0,17 + 3·10 –4 ·20)(26 – 20) = 15,9 м

rсх1 = 21,2 (15,9 – 11,35) / 15,9 = 6 м

rсх2 = 21,2 (15,9 – 6) / 15,9 = 13,2 м


Рисунок 6.1- Схема грозозащиты ОРУ-110кВ.

Молниеотводы состоят из молниеприемника, несущей конструкции, токоотвода и заземлителя. Молниеприемник непосредственно воспринимает прямой удар молнии. Поэтому он должен надежно противостоять механическим и тепловым воздействиям тока и высокотемпературного канала молнии. Молниеприемники изготовляются из прокатной стали любого профиля сечением не менее 100 мм2 , при длине не более 2,5 м. Несущая конструкция несет на себе молниеприемник и токоотвод, объединяет все элементы молниеотвода в единую, жесткую, механически прочную конструкцию. В энергетике получили широкое распространение конструкции молниеотводов с деревянными, железобетонными и металлическими опорами.

Токоотвод соединяет молниеприемник с заземлителем и предназначен для пропускания тока молнии от молниеприемника к заземлителю. Поэтому он рассчитывается на тепловые и электродинамические воздействия, связанные с прохождением по нему тока молнии. Токоотводы у молниеотводов с деревянными опорами изготовляются различного профиля с сечением, рассчитанным для прохождения полного тока молнии. Рекомендуется брать круглую сталь диаметром не менее 6 мм2, угловую сталь сечением не менее 48 мм2 и толщиной стенки 4 мм.

Заземлители молниеотводов служат для отвода тока молнии в землю. Исходя из требований грозоупорности ЭУ, сопротивления заземлителей не должны превосходить 10-15 Ом.

Соединение отдельных частей токоотвода между собой, с молниеприемником и с заземлителем производится при помощи сварки. Для предохранения от коррозии токоотводы окрашиваются.

3h>3h>
1   2   3   4   5   6   7   8   9   10