Файл: методология науч иссл.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 03.05.2024

Просмотров: 534

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Методология научных исследований

1. Предмет и задачи методологии научного познания

1.1. Обыденное и научное знание

1.2. Предмет методологии науки

2. Научная проблема

2.1. Выбор и постановка научных проблем

2.2. Разработка и решение научных проблем

2.3. Классификация научных проблем

3. Методы эмпирического исследования

3.1. Наблюдение

3.2. Эксперимент

3.3. Измерения

4. Гипотеза и индуктивные методы исследования

4.1. Гипотеза как форма научного познания

4.2. Гипотетико-дедуктивный метод

4.3. Математическая гипотеза

4.4. Требования, предъявляемые к научным гипотезам

4.5. Некоторые методологические и эвристические принципы построения гипотез

4.6. Методы проверки и подтверждения гипотез

5. Законы и их роль в научном исследовании

5.1. Логико-гносеологический анализ понятия «научный закон»

5.2. Эмпирические и теоретические законы

5.3. Динамические и статистические законы

5.4. Роль законов в научном объяснении и предсказании

6. Методы анализа и построения теорий

6.1. Основные типы научных теорий

6.2. Цель, структура и функция теории

6.3. Гипотетико-дедуктивный метод построения теории

6.4. Аксиоматический способ построения теории

6.5. Математизация теоретического знания

4.2. Гипотетико-дедуктивный метод

В процессе научного исследования гипотеза используется для двух целей: объяснить с ее помощью существующие факты и предсказать новые, неизвестные факты.

Это основная и наиболее известная функция гипотезы.

Задача исследователя в данном случае состоит в том, чтобы на основании имеющихся эмпирических фактов и существующих теоретических представлений оценить степень вероятности, или правдоподобия, гипотезы. Гипотеза выступает здесь в качестве заключения или результата некоторого вероятностного рассуждения.

Путем выведения из гипотезы различных следствий можно судить о ее теоретической и эмпирической пригодности.

Если окажется, например, что из гипотезы вытекают следствия, которые противоречат друг другу, то это свидетельствует о несостоятельности самой гипотезы.

Выведение эмпирически проверяемых следствий из гипотезы служит также важнейшим методом проверки ее соответствия действительности, т.е. ее истинности. Во всех этих и подобных им случаях гипотеза выступает уже в иной роли, а именно: в качестве исходной посылки некоторого правдоподобного, или гипотетического, рассуждения.

4.2.1. Гипотетические рассуждения

Гипотетическими называют рассуждения пли умозаключения, которые делаются из некоторых гипотез или предположений. Посылками

такого рассуждения могут быть гипотезы в собственном смысле этого слова, т.е. суждения, которые могут оказаться как истинными, так и ложными. Нередко в качестве посылок берутся суждения, противоречащие фактам или существующим мнениям. Термин «гипотеза» употребляется здесь в весьма широком смысле, обозначая любое предположение: в случае обычных гипотез истинное значение посылок остается неопределенным. Однако мы можем использовать в качестве посылок и суждения, заведомо противоречащие фактам и установившимся мнениям, и на этой основе делать некоторые логические выводы.

Наибольшее значение в научном исследовании имеют, конечно, рассуждения, посылками которых служат гипотезы в собственном смысле слова. Именно они дают возможность проверять наши обобщения, догадки и предположения по сопоставлению их следствий с результатами эмпирических наблюдений, а также экспериментов.

Такого рода рассуждения в литературе по логике принято называть гипотетико-дедуктивными, хотя дедуктивный характер вывода присущ и умозаключениям, в которых в качестве посылок используются суждения, противоречащие фактам или установившимся мнениям.


Существенное различие между рассуждениями, в которых мы делаем заключение из эмпирических данных, и гипотетическими выводами состоит в том, что в первом случае мы опираемся на суждения о точно установленных фактах, во втором — выводим следствия из гипотез.

Связь между посылками и гипотезой в эмпирическом исследовании всегда имеет вероятностный характер, так как опыт дает нам сведения о конечном числе фактов и случаев, заключение же гипотезы чаще всего относится к бесконечному числу фактов или случаев. Наиболее типичные примеры таких рассуждений встречаются в индуктивных обобщениях.

В гипотетических рассуждениях значение посылок является или неизвестным или заведомо противоречит фактам. Само же рассуждение является типично дедуктивным.

Однако проблематический характер посылок делает заключение также проблематическим. Такого рода рассуждения имеют значение постольку, поскольку из их посылок по логическим правилам дедукции можно получать однозначные следствия и по ним судить о характере самих посылок.

Гипотетические рассуждения применяются так же давно, как и обычные, так называемые категорические, но логический анализ их стал проводиться лишь в античную эпоху. Древние греки прибегали к таким рассуждениям и о науке, и в политических дискуссиях, и судебных спорах, а нередко и в повседневных делах. По-видимому, в первое время рассуждения с гипотетическими или противоречащими фактам посылками были неотъемлемой частью античной диалектики. Хорошо известно, что под диалектикой и Древней Греции понималось искусство ведения спора, полемики, беседы. В ходе такого спора каждый из участников стремился обнаружить противоречия в рассуждениях своего оппонента. Это можно было сделать посредством выведения следствий из принятых предположений, мнений или убеждений и последующего их сопоставления с реальными фактами или твердо установленными знаниями. Большое число конкретных примеров таких диалектических рассуждений можно обнаружить у Платона, который сам много заимствовал у своего учителя Сократа. Не случайно поэтому рассуждения, основанные на такой диалектике, иногда называют сократическими. До Сократа гипотетические рассуждения высоко ценились Зеноном и элеатами. В своих знаменитых апориях Зенон использует их как важный прием аргументации, вероятно, пифагорейцам принадлежит заслуга введения в математику такого плодотворного приема гипотетического рассуждения, как доказательство некоторого положения посредством сведения к нелепости его отрицания (reductio ad absurdum). Считается, что именно с помощью этого приема пифагорейцы доказали теорему о несоизмеримости диагонали квадрата с его стороной, принятой за единицу.


Систематическое использование гипотез в качестве посылок мы встречаем в работах основателя формальной логики Аристотеля. Для него гипотеза представляет предположение, служащее посылкой или исходным пунктом какой-либо аргументации. Принятие или отрицание гипотезы зависит от подтверждения ее следствий. Подход Стагирита к гипотезе не только оказал существенное влияние на характер изложения «Начал» Евклида, но и продолжает сохранять свое значение и сейчас в области так называемых формальных паук, т.е. в математике и логике. Действительно, с современной точки зрения математические аксиомы отнюдь не считаются самоочевидными истинами, как думали раньше, а представляют некоторые допущения, или гипотезы, из которых чисто логически выводится вся совокупность теорем. Аксиоматический метод дает возможность точно выявить необходимое и достаточное количество таких предположений и тем самым избавляет нас от логического круга, так как аксиомы, будучи исходными гипотезами, в рамках самой системы не доказываются.

Из математики гипотетические рассуждения были заимствованы греческими естествоиспытателями, которые использовали их для систематизации накопленного эмпирического материала. Но здесь гипотезы уже выступают как некоторые предположения, основанные на обобщении результатов наблюдений. Правильность их проверялась по тем следствиям, в которых можно было убедиться фактически. В данном случае мы уже переходим к собственно гипотетико-дедуктивному методу, который в античную эпоху нашел свое блестящее выражение в исследованиях Архимеда по статике.

В настоящее время гипотетико-дедуктивные рассуждения находят также применение в эвристике, дидактике, в теории обучения. Как своеобразный метод аргументации они используются при анализе мысленных экспериментов, планировании будущих действий и т.п. В этих разных по характеру ситуациях стремятся получить максимальное число дедуктивных следствий и соответственно с ними корректируют будущие действия. Но главной областью применения гипотетических рассуждений по-прежнему остаются естествознание и опытные науки.

4.2.2. Гипотетико-дедуктивный метод в классическом естествознании

Естествознание и опытные науки имеют дело прежде всего с данными наблюдений и результатами экспериментов. После соответствующей обработки опытных данных ученый стремится понять и объяснить их теоретически. Гипотеза и служит в качестве предварительного объяснения. Но для этого необходимо, чтобы следствия из гипотезы не противоречили опытным фактам. Поэтому логическая дедукция следствий из гипотезы служит закономерным этаном научного исследования.


В иных случаях такая дедукция не требует применения сколько-нибудь сложных и топких логических и математических методов исследования. Однако в таких развитых науках, как теоретическая физика, она представляет не менее трудную задачу, чем выдвижение и обоснование самих гипотез.

В зарубежной методологии науки нередко сам метод естествознания рассматривается как гипотетико-дедуктивный.

Это, конечно, преувеличение, ибо такой подход совершенно игнорирует роль индуктивных и статистических методов исследования. Рассматривая теоретические системы опытных наук как гипотетико-дедуктивиые, многие зарубежные логики и философы по сути дела анализируют лишь готовые теории. Они не показывают тех путей и средств, с помощью которых ученый приходит к исходным посылкам своей теории, т.е. к гипотезам, принципам и законам.

В то же время нельзя отрицать, что гипотетико-дедуктивная модель является наиболее подходящей для исследования структуры значительного числа естественнонаучных теорий. Чисто дедуктивные и формально-аксиоматические методы исследования применяются главным образом в математике, а также в тех разделах теоретического естествознания, где широко используются математические методы. Но даже в математике, когда заходит речь о ее применении к конкретным проблемам, мы вынуждены обращаться к гипотетико-дедуктивному методу, поскольку встает задача интерпретации аксиом как некоторых гипотез о реальном мире. Поясним эту мысль на примере геометрии. Предположим, что нам нужно решить вопрос о том, какая из геометрий — Евклида, Лобачевского или Римана — лучше описывает пространственные свойства окружающего нас мира. Первое, что нам придется сделать, — это избрать какую-либо конкретную интерпретацию исходных понятий и аксиом этих геометрических систем. Так, например, прямую линию можно рассматривать как путь светового луча, точку — как место пересечения таких лучей и т.д. После этого аксиомы геометрии перестанут быть абстрактными утверждениями и превратятся в некоторые гипотезы физического характера, правдоподобность которых можно проверить экспериментально.

Если в математике обращение к гипотетико-дедуктивному методу происходит только при применении его к опытному материалу, то в естествознании этот метод используется для построения самих теории. Действительно, обобщения, получаемые из опыта и гипотезы, здесь никогда не остаются изолированными утверждениями. Их стремятся связать в единую систему или цепь утверждений, причем большую часть их логически вывести из более общих гипотез, принципов или законов, хотя первоначально многие из них могли быть получены чисто эмпирическим или индуктивным путем.


В классическом естествознании наиболее широкое применение гипотетпко-дедуктивный метод получил в физике, в особенности в трудах основателей классической механики—Галилея и Ньютона. Это объясняется в первую очередь тем, что в механике впервые удалось осуществить точно контролируемые эксперименты. Немаловажную роль здесь играет и то обстоятельство, что зависимости между свойствами исследуемых явлений в механическом движении сравнительно легко поддаются математической формулировке. Логико-математические методы играют существенную роль и при дедукции следствий из гипотез. BОТ почему и Галилей и Ньютон очень высоко оценивали значение математических методов при исследовании явлений природы. Как мы уже отмечали, гипотетико-дедуктивным методом в естествознании начал пользоваться еще Архимед, но он имел дело только со статикой, с различными случаями равновесия сил. Экспериментальное изучение динамических процессов впервые начал проводить Галилей. В своих исследованиях он нередко прибегал к помощи гипотетико-дедуктивного метода, о чем свидетельствует его работа «Беседы и математические доказательства...», в которой можно найти немало чрезвычайно поучительных примеров применения этого метода к проблемам механики и сопротивления материалов.

В качестве иллюстрации обратимся к Дню третьему «Бесед», где Галилей излагает метод, с помощью которого он пришел к важнейшему открытию — установлению закона постоянства ускорения всех падающих тел. Вначале он, как и его предшественники, среди которых был Леонардо да Винчи, считал, что скорость падения пропорциональна пройденному пути, т.е. V = KS.

Впоследствии, однако, ему пришлось отказаться от этой гипотезы, так как она приводила к следствиям, которые не подтверждались, на опыте. Поэтому вместо нее он принял гипотезу, что скорость пропорциональна времени падения. Из этой гипотезы вытекает следствие: путь падающего тела пропорционален квадрату времени падения,— которое подтверждается результатами опыта.

Чтобы яснее проиллюстрировать ход рассуждений, которые скорее всего могли привести Галилея к его открытию, целесообразно рассмотреть следующий ряд последовательных гипотез. Исходной гипотезой, обладающей наибольшей логической силой, является предположение о том, что вблизи земной поверхности и при отсутствии сопротивления воздуха ускорение всех падающих тел представляет величину постоянную.

Из этой гипотезы 1-го уровня, выраженной в форме дифференциального уравнения, интегрированием получается гипотеза более низкого, 2-го уровня: скорость падающего тела пропорциональна времени падения.