ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 21.11.2024
Просмотров: 74
Скачиваний: 0
СОДЕРЖАНИЕ
1. Периферический отдел слуховой сенсорной системы. Строение и функции звукопроводящего аппарата.
2. Классификация условных рефлексов.
1. Классификация рецепторов и рецепторных органов. Критерии классификации.
2. Учение а.А.Ухтомского о доминанте. Принцип доминанты в деятельности мозга. Свойства доминанты
Типы внд, их обусловленность характером корково-подкорковых взаимодействий.
1. Внутренне ухо. Строение улитки, микроструктура спирального (кортиева) органа.
2. Торможение условных рефлексов, их виды и механизмы.
1. Светочувствительный аппарат глаза. Микроструктура сетчатки: фоторецепторы и нервные элементы.
2. Стадии выработки условного рефлекса.
2. Представление о временной (условной) связи. Механизмы ее замыкания.
Различение сигналов: психофизиологический закон Вебера-Фехнера.
Мотивации как физиологическое состояние, их биологическая роль и механизмы.
Электрические явления в сетчатке и зрительном нерве. Электроретинограмма.
Эмоции, их биологическая роль и нейрофизиологические механизмы.
Зрачковые реакции, их значение для восприятия и психодиагностики.
Основные положения учения и.М.Сеченова и и.П. Павлова.
Спектральная чувствительность глаза. Цветовое зрение. Нарушения цветовосприятия.
Стадии выработки условного рефлекса.
. Механизм восприятия звуков, рецепция звуков разной частоты.
Инстинкт. Организация инстинктивного поведения.
Гравитационная (вестибулярная) сенсорная система.
Внутреннее ухо. Анатомическое строение органов слуха и равновесия.
Типологические особенности высшей нервной деятельности детей.
Пространственное (стереоскопическое) зрение, острота зрения, методы их оценки.
2. Нейрофизиологические особенности поведения. Структура поведенческого акта.
Кожная сенсорная система: рецепторы кожи, проводящие пути и корковый отдел.
Мотивации как физиологическое состояние, их биологическая роль и механизмы.
Торможение условных рефлексов, его виды и механизмы.
Гравитационная (вестибулярная) сенсорная система.
Эмоциональные реакции, их значение, компоненты и механизмы
Гравитационная (вестибулярная) сенсорная система.
Нейрофизиологические особенности поведения. Структура поведенческого акта.
Светочувствительный аппарат глаза. Микроструктура сетчатки: фоторецепторы и нервные элементы.
Помимо основной анализаторной функции, важной для управления позой и движениями человека, вестибулярная сенсорная система оказывает разнообразные побочные влияния на многие функции организма, которые возникают в результате иррадиации возбуждения на другие нервные центры при низкой устойчивости Вестибулярного аппарата. Его раздражение приводит к снижению возбудимости зрительной и кожной сенсорных систем, ухудшению точности движений. Вестибулярные раздражения приводят к нарушениям координации движений и походки, изменениям частоты сердцебиения и артериального давления, увеличению времени двигательной реакции и снижению частоты движений, ухудшению чувства времени, изменению психических функций — внимания, оперативного мышления, кратковременной памяти, эмоциональных проявлений,
Нейрофизиологические особенности поведения. Структура поведенческого акта.
На сегодняшний день наиболее совершенная модель структуры поведения изложена в концепции функциональной системы П.К. Анохина. Изучая физиологическую структуру поведенческого акта, П.К. Анохин пришел к выводу о необходимости различать частные механизмы интеграции от самой интеграции, когда эти частные механизмы вступают между собой в сложное координированное взаимодействие. Рассматривая акт плавания аксолотля (личинки хвостатого земноводного), он показал, что плавательные волнообразные движения тела возникают за счет интеграции более частных механизмов управления движениями. Волна возбуждения, вызывающая последовательное сокращение мышечных сегментов, многократно пробегает от начала туловища к хвосту вдоль обеих сторон тела. При этом возбуждению мышечного сегмента на одной стороне тела соответствует торможение одноименного сегмента на противоположной стороне. Это легко можно увидеть с помощью вкалывания регистрирующих электродов в мышцы (рис. 27). Такая сложная последовательность мышечных сокращений достигается, с одной стороны, за счет ритмичности в подаче нервных импульсов, а с другой стороны, за счет их скоординированности, обеспечивающей шахматный порядок поступления залпов импульсов на мышцы противоположных сторон тела и, следовательно, реципрокный характер их сокращения. «Функциональная система — единица интегративной деятельности целого организма. Она осуществляет избирательное вовлечение и объединение структур и процессов на выполнение какого-либо четко очерченного акта поведения или функции организма». Другими словами, это — динамическая организация, в которой взаимодействие всех составляющих ее частей направлено на получение определенного и полезного для организма в целом приспособительного результата.
Функциональная система имеет разветвленный морфофизиологический аппарат, обеспечивающий за счет присущих ей закономерностей как эффект гомеостаза, так и саморегуляции. Выделяют два типа функциональных систем. Функциональные системы первого типа обеспечивают постоянство определенных констант внутренней среды за счет системы саморегуляции, звенья которой не выходят за пределы самого организма. Примером может служить функциональная система поддержания постоянства кровяного давления, температуры тела и т. п. Такая система с помощью разнообразных механизмов автоматически компенсирует возникающие сдвиги во внутренней среде. Функциональные системы второго типа используют внешнее звено саморегуляции. Они обеспечивают приспособительный эффект благодаря выходу за пределы организма через связь с внешним миром, через изменения поведения. Именно функциональные системы второго типа лежат в основе различных поведенческих актов, различных типов поведения. в том, что возбуждение в центральной нервной системе, вызванное внешним стимулом, действует не изолированно. Оно непременно вступает в тонкое взаимодействие с другими афферентными возбуждениями, имеющими другой функциональный смысл. Головной мозг производит обширный синтез всех тех сигналов внешнего мира, которые поступают в мозг по многочисленным сенсорным каналам. Завершение стадии афферентного синтеза сопровождается переходом в стадию принятия решения, которая и определяет тип и направленность поведения. Стадия принятия решения реализуется через специальную и очень важную стадию поведенческого акта — формирование аппарата акцептора результатов действия. Это аппарат, программирующий результаты будущих событий. В нем актуализирована врожденная и индивидуальная память животного и человека в отношении свойств внешних объектов, способных удовлетворить возникшую потребность, а также способов действия, направленных на достижение или избегание целевого объекта. Нередко в этом аппарате запрограммирован весь путь поиска во внешней среде соответствующих раздражителей. поведенческого акта — стадия программы действия или эфферентного синтеза. На этой стадии осуществляется интеграция соматических и вегетативных возбуждений в целостный поведенческий акт. Эта стадия характеризуется тем, что действие уже сформировано как центральный процесс, но внешне оно еще не реализуется.
Следующая стадия — это само выполнение программы поведения. Эфферентное возбуждение достигает исполнительных механизмов, и действие осуществляется.
Благодаря аппарату акцептора результатов действия, в котором программируется цель и способы поведения, организм имеет возможность сравнивать их с поступающей афферентной информацией о результатах и параметрах совершаемого действия, т. е. с обратной афферентацией. Это происходит до тех пор, пока результаты поведения не станут соответствовать свойствам нового акцептора действия. И тогда поведенческий акт завершается последней санкционирующей стадией — удовлетворением потребности.
Таким образом, в концепции функциональной системы наиболее важным ключевым этапом, определяющим развитие поведения, является выделение цели поведения. Она представлена аппаратом акцептора результатов действия, который содержит два типа образов, регулирующих поведение, — сами цели и способы их достижения.
Билет26
Светочувствительный аппарат глаза. Микроструктура сетчатки: фоторецепторы и нервные элементы.
Сетчатка — внутренняя оболочка глаза, являющаяся периферическим отделом зрительного анализатора; содержит фоторецепторные клетки, обеспечивающие восприятие и преобразование электромагнитного излучения видимой части спектра в нервные импульсы, а также обеспечивает их первичную обработку. Анатомически сетчатка представляет собой тонкую оболочку, прилежащую на всём своём протяжении с внутренней стороны к стекловидному телу, а с наружной — к сосудистой оболочке глазного яблока. В ней выделяют две неодинаковые по размерам части: зрительную часть — наибольшую, простирающуюся до самого ресничного тела, и переднюю — не содержащую фоточувствительных клеток — слепую часть, в которой выделяют в свою очередь ресничную и радужковую части сетчатки, соответственно частям сосудистой оболочки.
Фоторецепторы (палочки и колбочки).
Билет 27
Нарушения слуха и речи.
Нарушение слуха — полное (глухота) или частичное (тугоухость) снижение способности обнаруживать и понимать звуки. Нарушением слуха может страдать любой организм, способный воспринимать звук. Звуковые волны различаются по частоте и амплитуде. Потеря способности обнаруживать некоторые (или все) частоты или неспособность различать звуки с низкой амплитудой, называется нарушением слуха. Вызывается широким спектром биологических и экологических факторов. Причинами могут быть заболевания внутреннего уха и слухового нерва, воспаление среднего уха или некоторые инфекционные болезни — менингит, грипп и др.; иногда — травма или продолжительное воздействие сильного шума и вибраций. У человека нарушение слуха, делающее невозможным восприятие речи, называется глухотой, а более лёгкие степени нарушения слуха, затрудняющие восприятие речи — тугоухостью (нейросенсорной, кондуктивной или смешанного характера). Кроме того, глухота бывает врождённая или приобретённая. Нарушение слуха вызывается различными биологическими и экологическими факторами. Обычно уязвимой частью тела является ухо.
Долговременное воздействие шума Люди, проживающие около аэропортов или оживлённых шоссе подвергаются постоянному звуковому облучению интенсивностью 65—75 дБ. Если в таких условиях человек вынужден проводить много времени на улице или находиться дома с открытыми окнами, то постепенно у него может развиться ослабление слуха. Существуют определённые стандарты, в соответствии с которыми устанавливается допустимый уровень шума и риска для здоровья людей. В частности, организация USEPA (United States Environmental Protection Agency — Агентство по защите окружающей среды Соединённых Штатов Америки) устанавливает порог в 70 дБ при круглосуточном облучении как приемлемый для здоровья (EPA, 1974). Нарушение слуха от долговременного воздействия шума обычно действует на частотах около 4000 Гц.Чем громче уровень шума, тем меньше безопасное время пребывания под его облучением. Обычно это время уменьшается в 2 раза на каждые дополнительные 3 дБ. Иногда для удобства используют не 3, а 5 дБ. Портативные проигрывающие устройства, такие как iPod (громкость которого может достигать 115 дБ), могут вызывать сильные нарушения слуха.
Генетическое нарушение слуха
Митохондриальные заболевания:
Наследуемый по материнской линии синдром диабета и глухоты
Синдром MELAS
[Потери слуха, вызванные заболеваниями
Медикаментозное нарушение слуха
Проводящая потеря слуха
Основная статья Кондуктивная тугоухость Проводящая потеря слуха возникает, когда внешнее или среднее ухо (или оба сразу) не проводят звук так, как должны это делать. Так как звук может быть воспринят нормально функционирующими ушным каналом, барабанной перепонкой и ушной косточкой, то такое нарушение слуха бывает лишь частичным и вызывает незначительное ухудшение восприятия звуков. Порог слышимости при проблемах с внешним или средним ухом не превышает 55-60 дБ. В общем случае, при проводящей потере слуха распознавание речи не ухудшается при условии достаточно больших значений громкости, чтобы слушатель мог услышать речь.Проводящая потеря слуха может быть вызвана следующими причинами: Непроходимость ушного канала. Аномалии среднего уха: Барабанной перепонки. Косточек Физическая травма Травма может быть нанесена как самому уху, так и мозговым центрам, обрабатывающим аудио информацию. Люди, перенёсшие травму головы особенно подвержены риску физических травмирования уха.Подвергание слишком громкому шуму (больше 90 Дб, например: нахождение вблизи самолетного двигателя)