Файл: Операции, производимые с данными ( Операции с данными ).pdf

ВУЗ: Не указан

Категория: Курсовая работа

Дисциплина: Не указана

Добавлен: 01.04.2023

Просмотров: 88

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Для кодирования цветных графических изображений применяется принцип декомпозиции произвольного цвета на основные составляющие. В качестве таких составляющих используют три основных цвета:

  1. красный (Red, R);
  2. зеленый (Green, G);
  3. синий (Blue, В).

На практике считается, что любой цвет, видимый человеческим глазом, можно получить путем механического смешения этих трех основных цветов. Такая система кодирования называется системой RGB (по первым буквам названий основных цветов).

Если для кодирования яркости каждой из основных составляющих использовать по 256 значений (восемь двоичных разрядов), как это принято для полутоновых черно-белых изображений, то на кодирование цвета одной точки надо затратить 24 разряда. При этом система кодирования обеспечивает однозначное определение 16,5 млн. различных цветов, что на самом деле близко к чувствительности человеческого глаза. Режим представления цветной графики с использованием 24 двоичных разрядов называется полноцветным (True Color).

Каждому из основных цветов можно поставить в соответствие дополнительный цвет, то есть цвет, дополняющий основной цвет до белого. Нетрудно заметить, что для любого из основных цветов дополнительным будет цвет, образованный суммой пары остальных основных цветов. Соответственно, дополнительными цветами являются:

    1. голубой (Cyan, С);
    2. пурпурный (Magenta., М);
    3. желтый (yellow, Y).

Принцип декомпозиции произвольного цвета на составляющие компоненты можно применять не только для основных цветов, но и для дополнительных, то есть любой цвет можно представить в виде суммы голубой, пурпурной и желтой составляющей. Такой метод кодирования цвета принят в полиграфии, но в полиграфии используется еще и четвертая краска — черная (Black, К). Поэтому данная система кодирования обозначается четырьмя буквами CMYK (черный цвет обозначается буквой К, потому, что буква В уже занята синим цветом), и для представления цветной графики в этой системе надо иметь 32 двоичных разряда. Такой режим тоже называется полноцветным (True Color).

Если уменьшить количество двоичных разрядов, используемых для кодирования цвета каждой точки, то можно сократить объем данных, но при этом диапазон кодируемых цветов заметно сокращается. Кодирование цветной графики 16-разрядными двоичными числами называется режимом High Color.

При кодировании информации о цвете с помощью восьми бит данных можно передать только 256 цветовых оттенков. Такой метод кодирования цвета называется индексным. Смысл названия в том, что, поскольку 256 значений совершенно недостаточно, чтобы передать весь диапазон цветов, доступный человеческому глазу, код каждой точки растра выражает не цвет сам по себе, а только его номер (индекс) в некоей справочной таблице, называемой палитрой. Разумеется, эта палитра должна прикладываться к графическим данным — без нее нельзя воспользоваться методами воспроизведения информации на экране или бумаге (то есть, воспользоваться, конечно, можно, но из-за неполноты данных полученная информация может быть неправильной: листва на деревьях может оказаться красной, а небо — зеленым).


2.6 Кодирование звуковой информации

Приемы и методы работы со звуковой информацией пришли в вычислительную технику позднее. К тому же, в отличие от числовых, текстовых и графических данных, у звукозаписей не было столь же длительной и проверенной истории кодирования. В итоге методы кодирования звуковой информации двоичным кодом далеки от стандартизации. Множество отдельных компаний разработали свои корпоративные стандарты, но если говорить обобщенно, то можно выделить два основных направления.

  1. Метод FM (Frequency Modulation) основан на том, что теоретически любой сложный звук можно разложить на последовательность простейших гармонических сигналов разных частот, каждый из которых представляет собой правильную синусоиду, а следовательно, может быть описан числовыми параметрами, то есть кодом. В природе звуковые сигналы имеют непрерывный спектр, то есть являются аналоговыми. Их разложение в гармонические ряды и представление в виде дискретных цифровых сигналов выполняют специальные устройства — аналогово-цифровые преобразователи (АЦП). Обратное преобразование для воспроизведения звука, закодированного числовым кодом, выполняют цифро-аналоговые преобразователи (ЦАП). При таких преобразованиях неизбежны потери информации, связанные с методом кодирования, поэтому качество звукозаписи обычно получается не вполне удовлетворительным и соответствует качеству звучания простейших электромузыкальных инструментов с окрасом, характерным для электронной музыки. В то же время данный метод кодирования обеспечивает весьма компактный код, и потому он нашел применение еще в те годы, когда ресурсы средств вычислительной техники были явно недостаточны.
  2. Метод таблично-волнового (Wave-Table) синтеза лучше соответствует современному уровню развития техники. Если говорить упрощенно, то можно сказать, что где-то в заранее подготовленных таблицах хранятся образцы звуков для множества различных музыкальных инструментов (хотя не только для них). В технике такие образцы называют сэмплами. Числовые коды выражают тип инструмента, номер его модели, высоту тона, продолжительность и интенсивность звука, динамику его изменения, некоторые параметры среды, в которой происходит звучание, а также прочие параметры, характеризующие особенности звука. Поскольку в качестве образцов используются «реальные» звуки, то качество звука, полученного в результате синтеза, получается очень высоким и приближается к качеству звучания реальных музыкальных инструментов.

Размещено на Allbest.ru

Заключение

В ходе информационного процесса данные преобразуются из одного вида в другой с помощью методов. Обработка данных включает в себя множество различных операций. По мере развития научно-технического прогресса и общего усложнения связей в человеческом обществе трудозатраты на обработку данных неуклонно возрастают. Прежде всего, это связано с постоянным усложнением условий управления производством и обществом. Второй фактор, также вызывающий общее увеличение объемов обрабатываемых данных, тоже связан с научно-техническим прогрессом, а именно с быстрыми темпами появления и внедрения новых носителей данных, средств хранения и доставки данных. В структуре возможных операций с данными можно выделить следующие основные:

1. Сбор данных – накопление данных с целью обеспечения достаточной полноты информации для принятия решения;

2. Формализация данных – приведение данных, поступающих из разных источников, к одинаковой форме, чтобы сделать их сопоставимыми между собой, то есть повысить их уровень доступности;

3. Фильтрация данных – отсеивание «лишних» данных, в которых нет необходимости для принятия решений; при этом должен уменьшаться уровень «шума», а достоверность и адекватность данных должны возрастать; 4. Сортировка данных – упорядочение данных по заданному признаку с целью удобства использования; повышает доступность информации;

5. Группировка данных – объединение данных по заданному признаку с целью повышения удобства использования; повышает доступность информации;

6. Архивация данных – организация хранения данных в удобной и легкодоступной форме; служит для снижения экономических затрат на хранение данных и повышает общую надежность информационного процесса в целом;

7. Защита данных – комплекс мер, направленных на предотвращение утраты, воспроизведение и модификации данных; 8. Транспортировка данных – прием и передача (доставка и поставка) данных между удаленными участниками информационного процесса; при этом источник данных в информатике принято называть сервером, а потребителя – клиентом;

Список использованной литературы

1. Архитектура и технологии IBM eServer zSeries / В.А. Варфоломеев и др. - М.: Интернет-университет информационных технологий, 2015. - 640 c.
2. Владимир, Михайлович Илюшечкин Основы использования и проектирования баз данных / Владимир Михайлович Илюшечкин. - М.: Юрайт, 2015. - 516 c.
3. Голицына, О. Л. Базы данных / О.Л. Голицына, Н.В. Максимов, И.И. Попов. - М.: Форум, 2015. - 400 c.
4. Зубов, А. В. Основы искусственного интеллекта для лингвистов / А.В. Зубов, И.И. Зубова. - Москва: РГГУ, 2013. - 320 c.
5. Илюшечкин, В. М. Основы использования и проектирования баз данных / В.М. Илюшечкин. - М.: Юрайт, Юрайт, 2013. - 224 c.
6. Илюшечкин, В. М. Основы использования и проектирования баз данных. Учебник / В.М. Илюшечкин. - М.: Юрайт, 2014. - 214 c.
7. Илюшечкин, В. М. Основы использования и проектирования баз данных. Учебник / В.М. Илюшечкин. - М.: Юрайт, 2015. - 214 c.
8. Исаев, Г. Н. Информационные системы в экономике. Учебник / Г.Н. Исаев. - М.: Омега-Л, 2015. - 464 c.
9. Карпова, И. П. Базы данных / И.П. Карпова. - М.: Питер, 2013. - 240 c.
10. Кириллов, В.В. Введение в реляционные базы данных (+ CD-ROM) / В.В. Кириллов. - М.: БХВ-Петербург, 2016. - 318 c.
11. Комплекснозначные и гиперкомплексные системы в задачах обработки многомерных сигналов / Я.А. Фурман и др. - М.: ФИЗМАТЛИТ, 2015. - 456 c.
12. Костин, А. Е. Организация и обработка структур данных в вычислительных системах. Учебное пособие / А.Е. Костин, В.Ф. Шаньгин. - М.: Высшая школа, 2014. - 248 c.
13. Кудрявцев, В.Б. Интеллектуальные системы. Учебник и практикум для бакалавриата и магистратуры / В.Б. Кудрявцев, Э.Э. Гасанов, А.С. Подколзин. - Москва: ИЛ, 2016. - 219 c.
14. Кузнецов, С. Д. Базы данных. Модели и языки / С.Д. Кузнецов. - М.: Бином-Пресс, 2013. - 720 c.
15. Кузнецов, С. Д. Основы баз данных / С.Д. Кузнецов. - М.: Бином. Лаборатория знаний, Интернет-университет информационных технологий, 2017. - 488 c.
16. Латыпова, Р. Р. Базы данных. Курс лекций / Р.Р. Латыпова. - Москва: Высшая школа, 2016. - 177 c.
17. Мартишин, С. А. Базы данных. Практическое примечание СУБД SQL и NoSOL. Учебное пособие / С.А. Мартишин, В.Л. Симонов, М.В. Храпченко. - М.: Форум, Инфра-М, 2016. - 368 c.
18. Миркин, Б. Г. Введение в анализ данных. Учебник и практикум / Б.Г. Миркин. - М.: Юрайт, 2015. - 176 c.
19. Нейрокомпьютеры в системах обработки изображений. - М.: Радиотехника, 2013. - 192 c.
20. Остроух, А. В. Ввод и обработка цифровой информации / А.В. Остроух. - М.: Академия, 2016. - 288 c.