Файл: Процессор персонального компьютера. Назначение, функции, классификация процессора.pdf

ВУЗ: Не указан

Категория: Курсовая работа

Дисциплина: Не указана

Добавлен: 06.04.2023

Просмотров: 89

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Если брать во внимание современные процессоры, то количество транзисторов, там уже давно переходит за 1 млрд.

Ну а техпроцесс у первых моделей начинался не с нанометров, а с более объёмных величин.

Частота процессора.

Если рассматривать специфические характеристики процессоров, то тактовая частота является наиболее известным параметром. Достаточно продолжительное время разработчики делали ставки именно на повышение тактовой частоты, но со временем, "мода" поменялась, и большинство разработок уходят на создание более совершенной архитектуры, увеличения кэш-памяти и развития многоядерности, но и про частоту никто не забывает.

Для начала нужно разобраться с определением «тактовая частота». Тактовая частота показывает нам, сколько процессор может произвести вычислений в единицу времени. Соответственно, чем больше частота, тем больше операций в единицу времени может выполнить процессор. Тактовая частота современных процессоров, в основном, составляет 1,0-4ГГц. Она определяется умножением внешней или базовой частоты, на определённый коэффициент. Например, процессор Intel Core i7 920 использует частоту шины 133 МГц и множитель 20, в результате чего тактовая частота равна 2660 МГц.

Частоту процессора можно увеличить в домашних условиях, с помощью разгона процессора. Существуют специальные модели процессоров от AMD и Intel, которые ориентированы на разгон самим производителем, к примеру, Black Edition у AMD и линейки К-серии у Intel.

Сейчас, почти во всех сегментах рынка уже не осталось одноядерных процессоров. Ну оно и логично, ведь IT-индустрия не стоит на месте, а постоянно движется вперёд семимильными шагами. Поэтому нужно чётко уяснить, каким образом рассчитывается частота у процессоров, которые имеют два ядра и более.

Существует распространенное заблуждение насчёт понимания (высчитывания) частот многоядерных процессоров. Сразу же можно привести пример этого неправильного рассуждения: «Имеется 4-х ядерный процессор с тактовой частотой 3 ГГц, поэтому его суммарная тактовая частота будет равна: 4 х 3ГГц=12 ГГц, ведь так?»- Нет, не так.

Можно объяснить, почему суммарную частоту процессора нельзя понимать как: « количество ядер х указанную частоту».

Приведем пример: «По дороге идёт пешеход, у него скорость 4 км/ч. Это аналогично одноядерному процессору на N ГГц. А вот если по дороге идут 4 пешехода со скоростью 4 км/ч, то это аналогично 4-ядерному процессору на N ГГц. В случае с пешеходами мы не считаем, что их скорость будет равна 4х4 =16 км/ч, мы просто говорим: "4 пешехода идут со скоростью 4 км/ч". По этой же причине мы не производим никаких математических действий и с частотами ядер процессора, а просто помним, что 4-ядерный процессор на N ГГц обладает четырьмя ядрами, каждое из которых работает на частоте N ГГц».


То есть, по сути, частота процессора от количества ядер не изменяется, увеличивается лишь производительность процессора.

Классификации

Intel

Pentium – первые процессоры семейства P5 (март 1993 г.). Тогда Intel, чтобы не повторить ошибки с i486 (суд отклонил иск к AMD по поводу названия), решила дать своему изделию имя, которое впоследствии стало нарицательным. Первое поколение Pentium носило кодовое имя P5, а также i80501, напряжение питания было 5 В, расположение выводов – "матрица", тактовые частоты – 60 и 66 МГц, технология изготовления – 0,80-микронная, частота шины равна частоте ядра. Выпускались в конструктиве под Socket 4.

Развитием этого семейства стал P54, он же i80502, напряжение питания ядра было снижено с 5 В до 3,3 В, расположение выводов – "шахматная матрица", технология – 0,50 мкм, а затем 0,35 мкм. Тактовая частота ядра – 75-200 МГц, шины – 50, 60, 66 МГц. Объем кэш-памяти L1 – 16Кбайт. Впервые она была разделена – 8 Кбайт на данные и 8 Кбайт на инструкции. Разъем Socket 7. Архитектура IA32, набор команд не менялся со времен процессоров i386.

Pentium MMX (P55, январь 1997 г.) стали следующими процессорами фирмы Intel. Добавился новый набор из 57 команд MMX. Технология – 0,35 мкм. Напряжение питания ядра уменьшилось до 2,8 В. Процессоры потребовали изменения в архитектуре материнских плат, так как двойное электропитание потребовало установки дополнительного стабилизатора напряжения. Объем кэш-памяти L1 был увеличен в два раза и составил 32 Кбайта. Внутренняя тактовая частота – 166-233 МГц, частота шины – 66 МГц. Рассчитаны на Socket 7. Стали последними в линейке процессоров Pentium для компьютеров Desktop.

Tillamook – кодовое наименование ядра процессоров Pentium, созданных в январе 1997 г. Предназначены для применения в портативных компьютерах. Технология – 0,25 мкм. Отличаются пониженным напряжением ядра и рассеиваемой мощности. Кэш-память L1 – 32 Кбайта, набор команд MMX. Тактовые частоты от 133 до 266+ МГц с частотой шины 60-66 МГц. Тип упаковки – TCP и MMC. Существуют переходники для установки Tillamook в гнездо Super 7.

Pentium Pro – первые процессоры шестого поколения, выпущенные в ноябре 1995 г. Впервые применена кэш-память L2, объединенная в одном корпусе с ядром и работающая на частоте ядра процессора. Процессоры имели очень высокую себестоимость изготовления. Выпускались сначала по технологии 0,50 мкм, а затем по 0,35 мкм, что позволило увеличить объем кэш-памяти L2 с 256 до 512, 1024 и 2048 Кбайт. Тактовая частота – от 150 до 200 МГц. Частота шины – 60 и 66 МГц. Кэш-память L1 – 16 Кбайт. Разъем Socket 8. Поддерживали все инструкции процессоров Pentium, а также ряд новых инструкций (cmov, fcomi и т.д.). В архитектуру была введена двойная независимая шина (DIB). В дальнейшем все новшества унаследовали Pentium II. Архитектура Pentium Pro значительно опередила свое время.


Pentium II/III – семейство P6/6x86, первые представители появились в мае 1997 г. Семейство этих процессоров объединяет под общим именем процессоры, предназначенные для разных сегментов рынка: Pentium II (Klamath, Deschutes, Katmai) – для массового рынка ПК среднего уровня, Celeron (Covington, Mendocino, Dixon и т.д.) – для недорогих компьютеров, Xeon (Xeon, Tanner, Cascades и т.д.) – для высокопроизводительных серверов и рабочих станций. Имеет модификации для Slot 1, Slot 2, Socket 370, а также соответствующие варианты для мобильных компьютеров.

Klamath – наименование ядра первых процессоров линейки Pentium II (январь 1997 г.). Технология – 0,35 мкм. Тактовые частоты ядра – 233-300 МГц. Частота шины – 66 МГц, кэш-память L1 – 32 Кбайт, кэш-память L2 – 512 Кбайт. Последняя для снижения стоимости процессора размещена на процессорной плате и работает на половине частоты ядра процессора. Дополнен MMX-блоком. Питание ядра – 2,8 В, конструктив – картридж SECC, разъем – Slot 1.

Deschutes – наименование ядра (январь 1998 г.) процессоров линейки Pentium II, сменившего Klamath. Технология – 0,25 мкм, питание ядра – 2,0 В. Тактовая частота – 266-450+ МГц, частота шины – 66, 100 МГц, кэш-память L1 – 32 Кбайта, кэш-память L2, размещенная на плате процессора, – 512 Кбайт. Разъем – Slot 1. Конструктив – картридж SECC, который в старших моделях был сменен на SECC2 (кэш с одной стороны от ядра, а не с двух, как в стандартном Deschutes; измененное крепление кулера).

Tonga – одно из кодовых наименований мобильных процессоров Pentium II – Mobile Pentium II. Построен на 0,25 мкм ядре Deschutes. Впервые появился в апреле 1998 г. Тактовая частота ядра – 233-300+ МГц, шины – 66 МГц. Выпускался в конструктиве Mini Cartridge Connector и Mobile Module Connector 1 и 2 (MMC-1 и 2).

Katmai – наименование ядра (сентябрь 1999 г.) процессоров Pentium III, пришедшего на смену Deschutes. Добавлен блок SSE (Streaming SIMD Extensions), расширен набор команд MMX, усовершенствован механизм потокового доступа к памяти. Техпроцесс – 0,25 мкм, тактовая частота – 450-600 МГц, кэш-память L2, размещенная на процессорной плате, – 512 Кбайт. Разъем – Slot 1. Частота шины – 100 МГц, но в связи с задержкой Coppermine были выпущены модели 533 и 600 МГц, рассчитанные на частоту шины процессора 133 МГц.

Celeron – семейство процессоров, ориентированных на массовый рынок недорогих компьютеров. В это семейство входят модели, созданные на основе архитектур Covington, Mendocino, Dixon, Coppermine. Впервые появились в апреле 1998 года. Выпускались вначале для Slot 1, в дальнейшем – для Socket 370.

Covington – первые варианты процессоров (апрель 1998 г.) линейки Celeron. Построены на ядре Deschutes. Технология – 0,25 мкм. Тактовая частота – 266-300 МГц, частота шины – 66 МГц, кэш L1 – 32 Кбайта. Для уменьшения себестоимости процессоры выпускались без кэш-памяти второго уровня и защитного картриджа. Питание ядра – 2,0 В. Интерфейс – облегченный Slot 1, конструктив – SEPP (Single Edge Pin Package). Процессоры характеризовались сравнительно низкой производительностью, но, благодаря отсутствию кэш-памяти L2, отличались высокой устойчивостью работы в режимах разгона.


Mendocino – наименование ядра (август 1998 г.) процессоров линейки Celeron. Имеет кэш-память L2 объемом 128 Кбайт, интегрированную в кристалл процессора и работающую на частоте ядра, благодаря чему обеспечивается высокая производительность. Тактовая частота – 300-533 МГц, частота шины – 66 МГц. Учитывая, что на рынке уже существовал процессор с частотой 300 МГц, первая модель процессора, созданная на основе ядра Mendocino и имевшая ту же частоту, получила наименование Celeron 300A. Технология – 0,25 мкм. Питание ядра – 2.0 В. Первоначальный форм-фактор Slot 1 (300-433 МГц) постепенно был вытеснен Socket 370 (300-533 МГц).

Dixon – наименование ядра, а также кодовое имя процессоров, ориентированных на применение в портативных компьютерах. Технология – 0,25 мкм, в дальнейшем – 0,18 мкм. Объем кэш-памяти первого уровня – 32 Кбайта. Как и в Mendocino, кэш-память L2 расположена на чипе, однако ее объем увеличен до 256 Кбайт. Тактовая частота – 300-500 МГц, частота шины – 66 МГц. Официальная классификация – мобильные процессоры Pentium II.

Coppermine – наименование ядра процессоров Pentium III и Celeron. Технология – 0,18 мкм. Характеризуется наличием интегрированных на чипах процессоров 256 Кбайт кэш-памяти L2 для Pentium III и 128 Кбайт – для Celeron. Частота – от 533 МГц и выше. Наряду с FSB100 МГц версиями Pentium III выпущены и варианты FSB133 МГц. Последние процессоры, рассчитанные на Slot 1, постепенно были вытеснены изделиями в конструктиве FC-PGA 370, рассчитанными на разъем Socket 370. Частота шины для процессоров Celeron – 66 МГц, а начиная с модели Celeron 800 – 100 МГц. Напряжение питания ядра – от 1,5 В до 1,7 В.

Coppermine T – наименование ядра процессоров Pentium III и Celeron. Является переходной ступенью от ядра архитектуры Coppermine к ядру архитектуры Tualatin. Создан по технологии 0,18 мкм. Ориентирован на работу с чипсетами, поддерживающими процессоры с ядром Tualatin.

Tualatin-256K – кодовое наименование ядра и процессоров Socket 370 Pentium III, сделанных по 0,13 мкм техпроцессу. Это последние Pentium III. Отличаются от Coppermine более совершенными архитектурой и технологией производства. Характеризуются пониженным напряжением питания и меньшим энергопотреблением. Рабочая частота моделей для Desktop с FSB 100 МГц – 1,0, 1,1 ГГц, а с FSB 133 МГц – 1,13 ГГц и выше.

Tualatin-512K – кодовое наименование ядра и процессоров. Содержит ядро Tualatin, но имеет 512 Кбайт кэш-памяти L2. Процессоры предназначены исключительно для мобильных устройств, соответствующие версии для Desktop не запланированы, чтобы не конкурировать с Pentium 4. В архитектуре процессоров, созданных на основе ядра Tualatin-512K, осуществлена поддержка технологий энергосбережения. Стандартное напряжение ядра – 1,4 В и ниже. На конец 2001 г. запланирован выпуск нового поколения на ядре Tualatin с FSB 100/133 МГц для экономичных моделей мини- и субноутбуков.


Tualatin-512K DP – кодовое наименование ядра и процессоров для серверов и рабочих станций. Выпуск первых моделей с рабочей частотой 1,13 ГГц и 1,26 ГГц запланирован на вторую половину 2001 г.

Pentium III-M – мобильные процессоры нового поколения, изготовленные с использованием 0,13-микронного технологического процесса. Имеют новые средства управления энергопотреблением SpeedStep, Deeper Sleep и т.п. Стандартное напряжение ядра – 1,4 В и ниже.

Pentium III-S – процессоры с ядром Tualatin, технология – 0,13 мкм, кэш L2 – 512 Кбайт, рабочие частоты – с 1,13 ГГц. Предназначены для двухпроцессорных конфигураций.

Timna – кодовое наименование процессоров, созданных на основе ядра Coppermine с кэш-памятью L2 128 Кбайт, интегрированными на чипе графическим ядром и контроллером оперативной памяти. Ориентированы на сверхдешевые PC и телеприставки. Выпуск отменен фирмой Intel вследствие бесперспективности изделия.

Banias – кодовое наименование процессоров, архитектура которых сходна с Timna. В чип интегрированы вычислительное ядро процессора, графическое ядро, а также северный мост чипсета. В отличие от Timna поддержка RDRAM не предусматривается. Предполагается, что кроме версии со стандартным питанием будут выпущены варианты Low Voltage и Ultra Low Voltage.

Разработка проекта Banias ведется в израильском Intel Israel Design Center, начало массового производства процессора намечено на конец 2002 года – начало 2003 года. В основу ядра нового процессора Banias положена модифицированная архитектура Pentium III, но без гиперконвейерной организации, присущей процессорам Pentium 4. Процессоры Banias будут выпускаться в модификациях, присущих нынешним классам мобильных процессоров от Intel, а именно Pentium III/Low-Voltage Pentium III/Ultra-Low-Voltage Pentium III. Для уменьшения потребляемой процессором энергии разрабатывается специальная технология внутрипроцессорных соединений MicroOps Fusion. Первые чипы будут иметь тактовую частоту начиная с той, на которой, скорее всего, остановятся мобильные Tualatin-M - 1,4 ГГц. Впрочем, экономичный процессор найдет место и в серверах, где проблема потребления энергии и тепловыделения также занимает не последнее место.

Как подчеркнул руководитель проекта Banias, перед командой поставлено три главных цели: уменьшение размеров транзисторов для снижения потребляемой энергии, разработка эффективной технологии повышения тактовой частоты без существенного увеличения потребляемой энергии, разработка эффективной технологии работы с командами процессора.

Xeon – официальное наименование линейки процессоров, ориентированных на использование в составе мощных серверов и рабочих станций.