ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 08.07.2020
Просмотров: 5091
Скачиваний: 5
СОДЕРЖАНИЕ
Тема 3 Слесарно-монтажные инструменты и
Ручной инструмент. Типовой набор ручного инструмента (рис.3.1) делится на:
4.7 Типичные дефекты при выполнении разметки,
причины их появления и способы предупреждения
6.1 Правила выполнения работ при разрезании металла
6.2 Правила безопасности труда
6.6 Типичные дефекты при резании металла, причины их появления
Стационарное оборудование для притирки и доводки
Отпуском называется процесс термической обработки, применяемый после закалки стали с целью устранения внутренних напряжений, уменьшения хрупкости, понижения твердости, увеличения вязкости и улучшения обрабатываемости.
Отпуск заключается в нагреве стали до температуры ниже линии PSK (точки Ас1), (см.рис.16.1), выдержке при этой температуре с последующим охлаждением в воде, масле или другой среде. В зависимости от температуры нагрева различают низкий, средний и высокий отпуск.
Низкий отпуск применяют для обработки режущего и измерительного инструмента, изготовленного из углеродистых и низколегированных сталей, шариков и роликов шарикоподшипников и др. Низкий отпуск осуществляют при температуре 150-250оС с выдержкой при этой температуре и последующим охлаждением на воздухе.
В результате низкого отпуска сталь сохраняет высокую твердость HRC 60, устраняется хрупкость, снимаются внутренние напряжения.
Средний отпуск применяют для инструментов, которые должны обладать значительной прочностью и упругостью при средней твердости HRC 35-47, а также для некоторых деталей (пружин, рессор). Этот отпуск производится при температуре 300-5000С.
Высокий отпуск (500-6000С) применяется с целью полностью снять внутренние напряжения, придать деталям высокую вязкость при условии сохранения достаточной твердости. Высокому отпуску подвергаются детали машин из конструкционной стали, которые работают при больших напряжениях и ударах: зубчатые колеса, валы, шатуны и т.д.
Закалку и отпуск инструментов простых форм (бородков, кернеров, зубил и т.д.) обычно осуществляют с одного нагрева (закалкой с самоотпуском). Нагретый под закалку инструмент охлаждают не весь, а «замачивают» только его рабочую часть и, не вынимая из закалочной среды, перемещают в вертикальном направлении. Этим достигается равномерное изменение свойств металла. Отпуск рабочей части происходит после того, как инструмент вынут из охлаждающей жидкости, за счет тепла, сохранившегося в неохладившейся внутренней части инструмента. Рабочую часть инструмента быстро защищают старым напильником, куском шлифовального круга или шлифовальной шкуркой. При появлении на поверхности рабочей части цвета побежалости, соответствующего необходимой температуре, инструмент вновь погружают в закалочную среду до полного охлаждения.
Таким образом, сердцевина инструмента, подвергнутого самоотпуску, будет иметь вязкость, необходимую, например, для зубила, которое должно выдерживать ударные нагрузки, испытываемые при рубке.
Старение закаленной стали. При низкотемпературном отпуске большая часть внутренних напряжений в закаленной стали остается. С течением времени они постепенно исчезают, в результате чего в металле наступает полное структурное равновесие. Самопроизвольное исчезновение внутренних напряжений при комнатной температуре весьма длительно и сопровождается изменением формы и размеров закаленных деталей. Этот процесс называют естественным старением. Изменение размеров в процессе естественного старения невелико и измеряется в микронах. Для деталей машин и режущего инструмента изменения размеров не имеют практического значения, поэтому их обычно не учитывают. Однако при изготовлении сверхточных машин, например координатно-расточных станков, измерительных калибров, даже такие небольшие изменения недопустимы. Чтобы размеры деталей и инструмента не изменялись с течением времени и оставались стабильными, их подвергают искусственному старению.
Сущность искусственного старения состоит в том, что закаленные и отпущенные при низкой температуре детали и инструмент после предварительного шлифования сначала подвергают нагреву до 100-1500С, затем выдерживают при этой температуре в течение 18-35 ч. При таком нагреве и выдержке все процессы, вызывающие изменение размеров стали, протекают значительно быстрее, чем при комнатной температуре. Поэтому после старения размеры деталей и инструмента стабилизируются.
Искусственное старение чаще всего производится в масляных ваннах. При отсутствии в цехе масляных ванн искусственное старение производят в кипящей воде с выдержкой в течение 36ч.
Техника безопасности при термической обработке. Работы по термической обработке металлов выполняют в соответствии с правилами техники безопасности, указанными в специальной инструкции.
16.1 Химико-термическая обработка стали
Химико-термической обработкой называется процесс изменения химического состава, структуры и свойств поверхностных слоев стальных деталей. Такой обработке часто подвергают детали с целью повышения твердости, износоустойчивости и коррозионной стойкости поверхностного слоя при сохранении вязкой и достаточно прочной сердцевины.
Наиболее распространенными видами химико-термической обработки являются цементация, азотирование, цианирование, а также диффузионная металлизация.
Кроме указанных видов обработки, также применяют хромирование (насыщение поверхности слоя хромом), силицирование (насыщение кремнием), борирование (насыщение бором).
Цементацией называется процесс насыщения поверхностного слоя низкоуглеродистой стали углеродом. Цель цементации – получение высокой твердости поверхностного слоя деталей при сохранении вязкой и мягкой сердцевины, а также повышение износостойкости и предела усталости. Насыщенный углеродом поверхностный слой называется цементированным.
Цементации подвергают детали из углеродистой (иногда и легированной) стали, содержащей углерода от 0,01 до 0,25%.
Богатые углеродом смеси, применяемые для цементации, называются карбюризаторами. Они могут быть твердыми, жидкими и газообразными. От вида применяемого карбюризатора цементация разделяется на твердую, жидкую и газообразную.
Твердая цементация (в твердом карбюризаторе) является наиболее старым процессом химико-термической обработки. Карбюризатор представляет собой порошкообразную смесь, состоящую (по массе) из древесного угля (70%), углекислого бария (20-25%) и углекислого кальция (3-5%). Добавление к древесному углю углекислых солей ускоряет процесс цементации.
Процесс цементации заключается в следующем: поступившую после механической обработки деталь (с припуском на последующую обработку) перед цементацией тщательно очищают от окалины, грязи, ржавчины, масла и просушивают. Поверхности, не подлежащие цементации, покрывают огнеупорной глиной в смеси с 5-10% асбестового порошка или же слоем меди в гальванических ваннах.
Если нельзя предохранить поверхность указанными выше способами, цементируют всю деталь, а затем дополнительно закаливают те места, которые должны обладать высокой твердостью или износоустойчивостью.
1 - ящик, 2 -
металлическая крышка, 3 - контрольные
прутки, 4 - огнеупорная
глина, 5 - детали, 6 - карбюризатор Рисунок
16.6 Цементация изделий
Обрабатываемые детали укладывают в специальный ящик (рис.16.6), изготовленный из жаростойкой стали, в следующем порядке: на дно ящика 1 насыпают слой порошкообразного карбюризатора 6 толщиной 25-30 мм и плотно утрамбовывают. На карбюризатор укладываются детали 5 на расстоянии 15-30 мм друг от друга, а затем снова насыпают карбюризатор слоем толщиной 15-20 мм и утрамбовывают; после этого укладывают второй ряд деталей и т.д.
Одновременно с укладкой обрабатываемых деталей в ящик помещают контрольные прутки 3 диаметром 6-10 мм и длиной 250 мм из такого же материала, как и материал детали. Эти прутки называются «свидетелями». В дальнейшем по излому прутков определяют глубину науглероженного слоя.
Толщина верхнего слоя карбюризатора 30-40 мм. Ящик плотно закрывают металлической крышкой 2, места между крышкой и стенками ящика промазывают огнеупорной глиной 4, ставят в холодную печь и постепенно нагревают до температуры 850-9200С; более высокая температура может вызвать чрезмерное науглероживание поверхности, низкая температура замедляет процесс.
Цементация при температуре выше 9500С, но не более 10000 допускается только для легированных сталей. Длительность выдержки и температура зависят от требуемой глубины науглероживаемого слоя, например, цементация, стали при температуре 9000С в течение 5ч дает науглероженный слой глубиной 0,4 – 0,5 мм, а в течение 10ч – 1,0-1,3 мм.
По окончании цементации ящики выгружают из печей, охлаждение деталей производится медленно, вместе с ящиками. После цементации детали подвергают обязательной термической обработке: закалке в воде при температуре 760-7800С и низкому отпуску при температуре 160-1800С.
Отпущенные детали после цементации охлаждают на воздухе, а затем закаливают при температуре 850-9000С и подвергают низкому отпуску (150-1700С).
Одним из существенных недостатков цементации в твердом карбюризаторе является значительная трудоемкость, загрязнение воздуха, невысокая производительность, большая длительность процесса. Для сокращения продолжительности цементации в качестве карбюризаторе применяют пасты, имеющие различный состав, например, кокса 50%, углекислого натрия или калия 40%, щавелевокислого натрия или калия 10% и др. Разведенную пасту наносят на детали и «свидетели» окунанием или кистью до получения слоя покрытия толщиной 2-3 мм, а затем высушивают при температуре 100-1200, после чего детали и «свидетели» укладывают в ящики.
Жидкостная цементация осуществляется путем погружения деталей в соляные ванны при температуре 830-8500С. Карбюризатором при этом являются расплавленные соли, содержащие 75-80% углекислого натрия (сода), 10-15% поваренной соли и 6-10% карбида кремния. Цементация происходит за счет атомарного углерода, выделяющегося в ванне при 820-8500С от взаимодействия солей с карбидом кремния. Длительность процесса составляет 0,5-2 ч. За 40-50 мин процесса глубина цементированного слоя не превышает 0,2 мм.
Цементации подвергают мелкие детали, глубина цементированного слоя не должна превышать 0,5-0,6 мм.
Преимуществом цементации в соляных ванных является равномерность нагрева и возможность непосредственной закалки после выемки из цементационной ванны. Процесс проходит быстрее, чем при цементации в твердой среде.
Газовая цементация заключается в насыщении поверхности стальных деталей углеродом в атмосфере углеродсодержащих газов. Газовую цементацию (в окиси углерода) впервые применил П.П.Аносов в 1837 г.
Газовую цементацию стальных деталей осуществляют в герметически закрытых камерах (муфелях) печей периодического или непрерывного действия путем нагрева при температуре 930-9500С в среде углеродосодержащих газов, например естественных, состоящих в основном из метана СН4 и окиси углерода СО. Используют также жидкие карбюризаторы: бензол, пиробензол, осветительный керосин, синтин (продукт синтеза окиси углерода) и сжиженный природный газ.
Продолжительность процесса устанавливается в зависимости от требуемой глубины цементируемого слоя. Нагрев в газовом карбюризаторе и процесс насыщения поверхностного слоя являются более прогрессивными и экономичными по сравнению с твердой цементацией.
Контрольные вопросы:
-
Какие физико-механические свойства стали, могут быть изменены путем термической обработки?
-
В чем разница между деталями, прошедшими отжиг и нормализацию? Приведите примеры из вашей практики.
-
В каких случаях применяют закалку с нагревом металла в печах и в каких случаях нагрев осуществляют токами высокой частоты?
-
Назовите виды термической обработки стали и объясните их назначение.
-
Расскажите о процессе отжига стали. Какие виды отжига применяют?
-
Какие дефекты могут быть при закалке? Как их предупредить и устранить?
-
Как определяют температуру нагрева стали при закалке и отжиге?
Тема 17 Сварка, резка и наплавка
Студент должен:
знать:
-
виды и сущность сварки, резки и наплавки;
-
область применения различных видов сварки, резки и наплавки;
-
инструменты и применяемое оборудование;
-
правила техники безопасности и пожарной безопасности при проведении сварочных работ.
Сваркой называется процесс получения неразъемного соединения металлических частей путем местного нагревания их до тестообразного или расплавленного состояния. Сварка может осуществляться с применением давления для сжатия свариваемых деталей или без применения его.
Сварку применяют при изготовлении железнодорожных вагонов, котлов, ответственных частей морских и речных судов, подъемно-транспортных сооружений, мостов, сельскохозяйственных машин и др. Очень широко сварка и резка металла используются в ремонтных и восстановительных работах, где они позволяют быстро и с наименьшими затратами восстановить изношенное или вышедшее из строя оборудование и сооружения (доменные печи, мосты, морские суда, газопроводные линии и т.д.).
Сварка применяется для соединений и наплавки разнообразных металлов: чугуна, стали, меди, бронзы, алюминия и др., для соединения металлов с неметаллами. Но не все металлы свариваются хорошо. Хорошо свариваются углеродистая сталь с содержанием углерода от 0,12 до 0,22%, низколегированные стали 20ХГС, 2ХМА и др. Ограниченно свариваются стали с содержанием углерода от 0,42 до 0,55%, низколегированные 30ХМА, 30ХГС и др. Плохо свариваются углеродистые стали с содержанием углерода более 0,55%, низколегированные 35ХГС, 40ХГС и др.
Сварным соединением называют соединение двух металлических частей, осуществленное сваркой.
На рис.17.1 изображены основные типы сварных соединений (швов). При сварке электрозаклепками верхний лист просверливается и отверстие заваривается так, чтобы сварка захватила поверхность нижнего листа.
а
- стыковые, б
-
угловые, в
- с накладками,
г
-
тавровые, д
- электрозаклепками
Рисунок 17.1 Виды
сварных соединений и швов
Та часть сварного соединения, которая образуется расплавленным в процессе сварки, а затем затвердевшим металлом, называется сварным швом.
В зависимости от расположения шва на свариваемом изделии различают швы нижние (обыкновенные), верхние (потолочные), горизонтальные и вертикальные. Наиболее труден процесс сварки потолочных швов.
17.1 Классификация способов сварки
Одним из признаков классификации способов сварки является применение давления для сжатия деталей в процессе сварки. Сварка может осуществляться:
- без приложения давления, путем расплавления металла свариваемых частей и слияния его; после затвердевания образуется шов (сварка плавлением);
- с применением давления, способствующего плотному контакту и взаимной диффузии металла в месте соприкосновения свариваемых частей (сварка давлением).
Сварка плавлением применяется шире вследствие меньшей стоимости, простоты оборудования и универсальности.
Сварка подразделяется на химическую, при которой для нагревания используется тепло химической реакции (например, горение твердого или газообразного топлива); к ней относятся газовая, кузнечная и термитная сварка; электрическую, при которой для нагревания используется электрический ток (электродуговая, электрошлаковая, электроконтактная); механическую (сварка трением, холодная сварка); ультразвуковую; сварку электронным лучом, а также диффузионную сварку в вакууме. Наиболее распространенными являются электродуговая, электрошлаковая, электроконтактная и газовая сварка.
Кузнечная сварка применяется для низкоуглеродистых сталей. Она осуществляется при температуре, близкой к точке плавления стали (1350-14500С), при проковке наложенных свариваемых концов. Этот старинный способ сварки трудоемкой и малопроизводительный, поэтому применяется редко.
Термитная сварка производится при помощи порошковой смеси одной части алюминия с тремя-четырьмя частями окиси железа. Термит легко зажигается и при бурном горении достигается температура 30000С. Наплавленным железом заполняют стыки соединений. Этот способ удобен для сварки рельсов и др.