Файл: 8(1) Переходные процессы в линейных электрических цепях.doc
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 20.10.2020
Просмотров: 440
Скачиваний: 4
5.4. Переходные процессы в электрических цепях с последовательно соединенными резисторами и катушками
В данном разделе предполагается не только практическое знакомство с классическим методом расчета переходных процессов, но и с особенностями самих процессов в рассматриваемых задачах.
5.4.1. Короткое замыкание в цепи с резистором и катушкой
Рис.
5.2
Исследуем электромагнитные процессы в цепи, изображенной на рис. 5.2, происходящие после замыкания ключа.
Рассчитаем установившийся режим в цепи до коммутации (до замыкания ключа) и определим из него независимое начальное условие — ток в катушке в момент t = 0-, непосредственно предшествующий коммутации
i(0-) = i(0+) = E / (Rвн + R).
Найдем установившийся ток i после коммутации. Так как во вновь образованном контуре из катушки L и резистора R нет источника, то iy = 0.
Для определения свободной составляющей тока запишем по второму закону Кирхгофа уравнение электрического состояния цепи после коммутации:
.
Характеристическое уравнение имеет вид:
pL + R = 0.
Общее решение уравнения для свободной составляющей:
iсв = A ept,
где:
А – постоянная интегрирования;
p = -
R/L, c-1
– корень характеристического уравнения.
Записав общий вид переходного тока катушки
i = iу + iсв = A ept,
приравниваем его значение i(0+) = A в точке t = 0+ к значению i(0-), найденному в п. 1. Получаем искомую константу
A = E / (Rвн + R) = I0.
Переходный ток i = iу + iсв при этом равен
,
где τ = L / R – постоянная времени цепи.
Постоянная времени – это время, в течение которого свободная составляющая процесса уменьшается в е = 2,72 раза по сравнению с начальным значением.
Рис.
5.3
График изменения переходного тока показан на рис. 5.3.
Определим э.д.с. самоиндукции катушки
t ≥ 0.
В момент коммутации эта э.д.с. равна напряжению на сопротивлении R, а в дальнейшем уменьшается по экспоненциальному закону. На основании изложенного можно сделать следующие выводы.
-
При коротком замыкании в рассматриваемой цепи ток в ней изменяется по экспоненциальному закону, уменьшаясь от начального значения до нуля.
-
Скорость изменения тока определяется постоянной времени цепи, которая равна индуктивности катушки, деленной на активное сопротивление цепи.
-
Практически можно считать, что переходный процесс заканчивается при t ≈ (3…5)τ , когда первоначальное значение тока уменьшается по модулю на порядок.
-
Напряжение на катушке в начальный момент времени равно напряжению на активном сопротивлении:
uL(0+) = I0R.
-
С энергетической точки зрения рассматриваемый переходный процесс характеризуется расходом энергии магнитного поля катушки на тепловые потери в резисторе. Следует отметить, что сопротивление резистора влияет не на количество выделенной теплоты W, а на начальное значение напряжения катушки и длительность процесса. В самом деле
.
5.4.2. Включение цепи с резистором и катушкой на постоянное напряжение
Рис.
5.4
Переходный ток в цепи, изображенной на рис. 5.4, представим в виде
i = iу + iсв.
1. До коммутации тока в катушке не было, следовательно,
iL(0-) = 0.
2. Установившаяся составляющая тока после коммутации
iу = U / R.
3. Свободная составляющая тока для цепи, описываемой дифференциальным уравнением первого порядка
iсв = A e-t/τ =A ept , p = - R / L.
4. По начальным условиям определим постоянную интегрирования А и свободную составляющую тока:
i(0) = iу(0) + iсв(0); i(0) = iу(0+) + iсв(0-);
или
0 = U / R + A; A = -U / R; iсв = -U / R · e-t/τ.
Переходный ток получается в виде
i = U / R (1 - e-t/τ).
Рис.
5.5
Напряжение на катушке
.
Кривые изменения токов i, iy, iсв и напряжения на катушке uL показаны на рис. 5.5.
При включении рассматриваемого контура под постоянное напряжение ток в нем нарастает от нуля до установившегося значения. Скорость нарастания тока
изменяется по экспоненте с отрицательным показателем. В момент t = 0 эта скорость максимальна и равна U / L [А/с], со временем она падает практически до нуля, процесс выходит на установившийся режим.
В первый после коммутации момент t = 0+ ток в цепи еще равен нулю, и напряжение на катушке максимально uL = U, далее оно экспоненциально снижается до нуля.
5.4.3. Включение цепи с резистором и катушкой на синусоидальное напряжение
Рис.
5.6
Если напряжение источника цепи (рис. 5.6)
u = Umsin(ωt + ψ),
то установившийся ток
iу = Um / Z sin(ωt + ψ - φ),
где:
–
полное сопротивление цепи;
φ = arctg(ω
L/R) - угол сдвига фаз между напряжением
и током.
Свободный ток определяется
iсв = A e-t/τ.
Суммируя установившуюся и свободную составляющие, получим выражение для переходного тока:
i = iу + iсв = Um / Z sin(ωt + ψ - φ) + A e-t/τ.
Рис.
5.7
используя независимые начальные условия при t = 0
i(0-) = i(0+) = 0,
находим постоянную интегрирования:
A = -Um / Z sin(ψ - φ).
Тогда переходный ток:
.
Зависимости переходного тока от времени при различных значениях разностей ψ - φ показаны на рис. 5.7. Их анализ позволяет сделать следующие выводы.
-
Если в момент включения установившийся ток равен нулю (ψ - φ = 0 или ψ - φ = π), то свободной составляющей тока не возникает и в цепи сразу возникает установившийся режим:
i = iу = Im sin(ωt) = Um / Z sin(ωt).
-
Если в момент включения установившийся ток имеет наибольшее значение (ψ - φ = π / 2), свободный ток достигает максимального по модулю значения приблизительно через половину периода, однако ни при каких условиях он не может превышать удвоенной амплитуды установившегося тока (рис. 5.7 б).
5.5 Переходные процессы в цепи с последовательно включенными резисторами и конденсатором
5.5.1. Разряд конденсатора на резистор
Рассмотрим переходный процесс при коротком замыкании в цепи с конденсатором и резистором (рис. 5.8), если предварительно конденсатор был заряжен до напряжения
uC(0+) = U0 = Е.
Рис.
5.8
Установившийся ток через конденсатор и установившееся напряжение на конденсаторе равны нулю. Для построения характеристического уравнения запишем по второму закону Кирхгофа уравнение для вновь образованного контура
R i + uC = 0.
При расчете переходных процессов в цепях с конденсатором часто удобнее отыскать сначала не ток, а напряжение на конденсаторе uC , а затем учитывая, что , найти ток через конденсатор. Поэтому запишем уравнение по второму закону Кирхгофа в виде:
.
Характеристическое уравнение имеет вид:
RCp + 1 = 0.
Общее решение для свободной составляющей напряжения:
uCсв = A ept = A e-t/τ,
где:
А = U0
– постоянная интегрирования;
p = - 1 /
(RC) – корень характеристического
уравнения;
τ = RC – постоянная времени
цепи.
С учетом нулевого значения установившегося напряжения получим напряжение на конденсаторе:
uC = U0 e-t/τ.
Переходный ток в цепи
.
Рис.
5.9
Кривые изменения напряжения на конденсаторе и тока в цепи во времени имеют вид экспонент (рис. 5.9).
С энергетической точки зрения переходный процесс характеризуется переходом энергии электрического поля конденсатора в тепловую энергию в резисторе. Следует отметить; что сопротивление резистора влияет не на количество выделенной теплоты, а на начальное значение тока и длительность разряда. В самом деле
.
5.5.2. Включение цепи с резистором и конденсатором на постоянное напряжение (заряд конденсатора)
Из схемы, приведенной на рис. 5.10, следует, что установившаяся составляющая напряжения на конденсаторе uCу = U, а свободная составляющая, очевидно, равна
Рис.
5.10
uCсв = A e-t/τ, τ = RC.
Полагаем, что до замыкания ключа конденсатор не был заряжен (Uс(0-) = 0). На основании законов коммутации uC(0-) = uC(0+) = 0, при t = 0; следовательно:
uC(0) = uCу(0) + uCсв(0) или 0 = U + A, откуда А = -U.
Тогда переходное напряжение на конденсаторе
uC = U (1 - e-t/τ),
а переходный ток в цепи
.
Зависимости напряжений и токов от времени показаны на рис. 5.10. Из них видно, что напряжение на конденсаторе возрастает по экспоненциальному закону от нуля до напряжения источника, а ток уменьшается от начального значения до нуля также по экспоненте. Длительность их изменения определяется постоянной времени τ = RC. Здесь как и в п. 5.5.1 время переходного процесса принимается равным t ≈ (3 ÷ 5)τ.
5.5.3. Включение цепи с резистором и конденсатором на синусоидальное напряжение
Рис.
5.11
Пусть напряжение источника изменяется по закону
u = Um sin(ωt + ψ).
Установившаяся составляющая напряжения на конденсаторе (см. рис. 5.11) равна:
uCу = -Um XC / Z sin(ωt + ψ – φ – π / 2).
где:
-
полное сопротивление цепи;
XC
= 1 / (ωC) – емкостное сопротивление;
φ = -arctg(XC / R)
– угол сдвига фаз между установившимся
током в цепи и приложенным синусоидальным
напряжением.
Свободная составляющая напряжения на конденсаторе
uCсв = A e-t/τ, τ = RC.
Переходное напряжение на конденсаторе
.
Рис.
5.12
Полагая, что uC(0-) = 0, для постоянной интегрирования получим
.
Окончательно напряжение на конденсаторе можно записать в виде
.
Ток в цепи
.
Зависимости переходного напряжения на конденсаторе от времени при различных значениях разностей ψ - φ показаны на рис. 5.12. Их анализ позволяет сделать следующие выводы.
Если в момент включения мгновенное значение установившегося напряжение на конденсаторе равно нулю (ψ – φ – π / 2 = 0), то и свободная составляющая напряжения равна нулю. В цепи сразу устанавливается режим (рис. 5.12 а).
Если в момент включения мгновенное значение установившегося напряжение на конденсаторе имеет наибольшее значение (ψ – φ – π / 2 = π / 2), то переходное напряжение достигает максимального значения приблизительно через половину периода и может приблизиться к удвоенной амплитуде установившегося напряжения, но не превысит его (рис. 5.12 в).
5.6. Разряд конденсатора на цепь с резистором и катушкой
Рис.
5.13
Пусть в цепи, изображенной на рис. 5.13, конденсатор был заряжен до напряжения uC(0-) = U0. Исследуем процессы в контуре, образованном резистором, конденсатором и катушкой после замыкания в момент t = 0 ключа. Так как источники в цепи отсутствуют, то установившиеся составляющие решений равны нулю. Решение будет состоять из одной свободной составляющей.
5.6.1. Составление характеристического уравнения. Определение собственных частот цепи
По второму закону Кирхгофа t ≥ 0 имеем:
.
Учитывая, что , получаем дифференциальное уравнение второго порядка для свободной составляющей напряжения
.
Характеристическое уравнение при этом имеет вид:
.
Характер электромагнитных процессов в контуре зависит от соотношения параметров R, L, С, входящих в выражение для корней характеристического уравнения
.
В зависимости от знака подкоренного выражения корни могут быть вещественными или комплексно-сопряженными. Они определяют характер свободных составляющих переходных токов и напряжений.
5.6.2. Апериодический разряд конденсатора на катушку и резистор
Рассмотрим процесс разряда конденсатора на резистор R и катушку L. Если параметры контура из резистора, катушки и конденсатора удовлетворяют условию или , то корни характеристического уравнения контура вещественные, различные, т.е. р1 ≠ р2, и отрицательные. В этом случае напряжение на конденсаторе описывается уравнением
uC = uCсв = A1 · ep1t + A2 · ep2t,
где А1 и А2 – постоянные интегрирования, определяемые из начальных, условий.
Свободный ток равен
.
Установившиеся составляющие напряжения на конденсаторе и тока равны нулю. Поэтому их переходные значения равны свободным составляющим:
uC = uCсв; i = iсв.
Определим из начальных условий постоянные интегрирования А1 и А2. При t = 0, uC(0) = U0 и i(0) = 0. Подставив их в выражения для переходных напряжений и токов при t = 0 имеем
U0 = A1 + A2; 0 = A1 p1 + A2 p2.
Отсюда
A1 = U0 p2 / (p2 - p1); A2 = -U0 p1 / (p2 - p1);
С учетом начальных условий запишем
; .
Рис.
5.14
Произведение корней по теореме Виета: p1 p2 = 1 / (LC), следовательно, ток
.
Напряжение на катушке
.
Графики зависимости тока и напряжения от времени, показанные на рис. 5.14 позволяют говорить об апериодическом разряде конденсатора. Апериодическим называется такой разряд, при котором конденсатор все время разряжается, т.е. функция uC(t) - убывающая, а ток i не меняет своего направления, в нашем случае он отрицателен. Сделаем некоторые выводы.
-
Апериодический разряд конденсатора в цепи R, L, С возникает при вещественных, отрицательных и неравных корнях характеристического уравнения.
-
При апериодическом разряде напряжение на конденсаторе уменьшается от начального значения до нуля, а ток сначала возрастает по модулю, затем уменьшается, проходя через максимальное значение.
-
Напряжение на катушке уменьшается от начального значения, проходит через нулевое значение, изменяя знак и, достигнув наибольшего значения, уменьшается до нуля.
5.6.3. Предельный апериодический разряд конденсатора на катушку и резистор
При соотношении параметров контура из конденсатора, катушки и резистора
,
где RКР - критическое сопротивление резистора R, корни характеристического уравнения контура вещественные, равные и отрицательные:
p1 = p2 = p = -R / (2L).
Переходный процесс получается апериодическим, но граничным с колебательным процессом. Переходный ток и переходное напряжение в этом случае имеют вид:
uC = (A1 + A2 t) ept;
.
При начальных условиях uC(0) = U0; i(0) = 0 находим: А1 = U0; A2 = -p U0. С учетом найденных постоянных интегрирования получаем решения:
uC
= U0
(1 - pt) ept;
;
.
Зависимости i, uC, uL такие же, как для апериодического разряда.
5.6.4. Периодический (колебательный) разряд конденсатора на цепь с резистором и катушкой
При соотношении параметров контура из конденсатора, катушки и резистора , где RКР – критическое сопротивление цепи, корни характеристического уравнения комплексные сопряженные:
p1,2 = -α ± jω,
где
α = R / (2L) – коэффициент
затухания свободной составляющей;
–
угловая частота собственных колебаний
контура;
Т0
– период собственных колебаний.
Поскольку , то можно ввести обозначения
, , .
Свободная составляющая переходного напряжения при комплексно-сопряженных корнях (см. п.п. 5.2.1)
uCсв = A e-αt sin(ω0t + ψ),
Для свободной составляющей тока имеем
iсв = C A e-αt (-α sin(ω0t + ψ) + ω0 cos(ω0t + ψ)).
С учетом начальных условий при t = 0, uC = U0 , i = 0 из последних двух уравнений находим константы интегрирования:
U0 = A sin ψ; 0 = C A (-α sin ψ + ω0 cos ψ).
и далее
.
Запишем переходные напряжения и ток:
uC
= UCm
e-αt
sin(ω0t
+ ψ);
i = -Im
e-αt
sin(ω0t
+ π);
uL=
ULm
e-αt
sin(ω0t
- ψ),
где ; .
Рис.
5.15
Зависимости переходных напряжения и тока uC, i показаны на рис. 5.15. Они представляют собой затухающие синусоиды. Скорость затухания колебаний оценивают декрементом колебаний. Декремент колебания - это постоянная, зависящая от параметров R, L, С и равная отношению амплитуд переходных параметров, отстающих друг от друга на период колебания Т0, например:
.
Часто пользуются логарифмическим декрементом колебания:
.
В предельном случае чисто консервативной системы (R = 0) Δ = 1 колебания в параллельно соединенных конденсаторе и катушке носят незатухающий характер. Период этих колебаний дается формулой Томпсона , а частота незатухающих колебаний .
5.7. Включение контура из конденсатора, резистора, катушки на постоянное напряжение