ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 20.10.2020
Просмотров: 136
Скачиваний: 2
Трансформаторы
1.1. Назначение и области применения
Трансформатором называют статическое электромагнитное устройство, имеющее две или большее число индуктивно-связанных обмоток и предназначенное для преобразования посредством электромагнитной индукции одной (первичной) системы переменного тока в другую (вторичную) систему переменного тока. Трансформаторы широко используются в промышленности и быту для различных целей.
1. Для передачи и распределения электрической энергии.
Обычно на электростанциях генераторы переменного тока вырабатывают электрическую энергию при напряжении 6-24 кВ, а передавать электроэнергию на дальние расстояния выгодно при значительно больших напряжениях (110, 220, 330, 400, 500, и 750 кВ). Поэтому на каждой электростанции устанавливают трансформаторы, осуществляющие повышение напряжения.
Распределение электрической энергии между промышленными предприятиями, населёнными пунктами, в городах и сельских местностях, а также внутри промышленных предприятий производится по воздушным и кабельным линиям, при напряжении 220, 110, 35, 20, 10 и 6 кВ. Следовательно, во всех распределительных узлах должны быть установлены трансформаторы, понижающие напряжение до величины 220, 380 и 660 В (рис. 1.1)
Рис.
1.1
2. Для обеспечения нужной схемы включения вентилей в преобразовательных устройствах и согласования напряжения на выходе и входе преобразователя. Трансформаторы, применяемые для этих целей, называются преобразовательными.
3. Для различных технологических целей: сварки (сварочные трансформаторы), питания электротермических установок (электропечные трансформаторы) и др.
4. Для питания различных цепей радиоаппаратуры, электронной аппаратуры, устройств связи и автоматики, электробытовых приборов, для разделения электрических цепей различных элементов указанных устройств, для согласования напряжения и пр.
5. Для включения электроизмерительных приборов и некоторых аппаратов (реле и др.) в электрические цепи высокого напряжения или же в цепи, по которым проходят большие токи, с целью расширения пределов измерения и обеспечения электробезопастности. Трансформаторы, применяемые для этих целей, называются измерительными.
Классификацию трансформаторов можно произвести по нескольким признакам:
1. По назначению трансформаторы разделяют на силовые общего и специального применения. Силовые трансформаторы общего применения используются в линиях передачи и распределения электроэнергии. Для режима их работы характерна частота переменного тока 50 Гц и очень малые отклонения первичного и вторичного напряжений от номинальных значений. К трансформаторам специального назначения относятся силовые специальные (печные, выпрямительные, сварочные, радиотрансформаторы), измерительные и испытательные трансформаторы, трансформаторы для преобразования числа фаз, формы кривой ЭДС, частоты и т.д.
2. По виду охлаждения – с воздушным (сухие трансформаторы) и масляным (масляные трансформаторы) охлаждением.
3. По числу фаз на первичной стороне – однофазные и трёхфазные.
4. По форме магнитопровода – стержневые, броневые, тороидальные.
5. По числу обмоток на фазу – двухобмоточные, трёхобмоточные, многообмоточные (более трёх обмоток).
6. По конструкции обмоток – с концентрическими и чередующимися (дисковыми) обмотками.
1.2. Принцип действия трансформатора
Электромагнитная схема однофазного двухобмоточного трансформатора состоит из двух обмоток (рис. 1.2), размещенных на замкнутом магнитопроводе, который выполнен из ферромагнитного материала. Применение ферромагнитного магнитопровода позволяет усилить электромагнитную связь между обмотками, т.е. уменьшить магнитное сопротивление контура, по которому проходит магнитный поток трансформатора. Первичную обмотку 1 подключают к источнику переменного тока – электрической сети с напряжением сети u1. К вторичной обмотке 2 присоединяют сопротивление нагрузки Zн.
Обмотку более высокого напряжения называют обмоткой высшего напряжения (ВН), а низкого напряжения – обмоткой низшего напряжения (НН). Начала и концы обмотки ВН обозначают буквами А и Х; обмотки НН – буквами а и х.
При подключении к сети в первичной обмотке возникает переменный ток i1, который создаёт переменный магнитный поток Ф, замыкающийся по магнитопроводу. Поток Ф индуцирует в обеих обмотках переменные ЭДС – е1 и е2 пропорциональные, согласно закону Максвелла, числам витков w1 и w2 соответствующей обмотки и скорости изменения потока dФ/dt.
Рис.
1.2
Таким образом, мгновенные значения ЭДС, индуцированные в каждой обмотке.
; .
Следовательно, отношение мгновенных и действующих ЭДС в обмотках определяется выражением
(1.1)
E1 / E2 = e1 / e2 = w1 / w2 .
Если пренебречь падениями напряжения в обмотках трансформатора, которые обычно не превышают 3-5 % от номинальных значений U1 и U2, и считать E1≈U1 и E2≈U2, то получим
(1.2)
U1 / U2 ≈ w1 / w2 .
Следовательно, подбирая соответствующим образом числа витков обмоток, при заданном напряжении U1 можно получить желаемое напряжение U2. Если необходимо повысить вторичное напряжение, то число витков w2 берут больше числа w1; такой трансформатор называют повышающим. Если требуется уменьшить напряжение U2, то число витков w2 берут меньшим w1; такой трансформатор называют понижающим.
Отношение ЭДС Eвн обмотки высшего напряжения к ЭДС Енн обмотки низшего напряжения (или отношение их чисел витков) называют коэффициентом трансформации
(1.3)
.
Коэффициент n всегда больше единицы.
В системах передачи и распределения энергии в ряде случаев применяют трёхобмоточные трансформаторы, а в устройствах радиоэлектроники и автоматики – многообмоточные трансформаторы. В таких трансформаторах на магнитопроводе размещают три или большее число изолированных друг от друга обмоток, что даёт возможность при питании одной из обмоток получать два или большее число различных напряжений (U2, U3, U4 и т.д.) для электроснабжения двух или большего числа групп потребителей. В трехобмоточных силовых трансформаторах различают обмотки высшего, низшего и среднего (СН) напряжения.
В трансформаторе преобразуются только напряжения и токи. Мощность же остаётся приблизительно постоянной (она несколько уменьшается из-за внутренних потерь энергии в трансформаторе). Следовательно, полная мощность потребляемая из сети
S1 = U1 I1 ,
практически полностью выделяется на нагрузке
S1 = U1 I1 ≈ S2 = U2 I2 .
Отсюда следуют соотношения между токами и напряжениями на первичной и вторичной обмотках трансформатора.
(1.4)
U1 / U2 = I2 / I1 = w1 / w2 = n .
При уменьшении вторичного напряжения в n раз по сравнению с первичным, ток i2 во вторичной обмотке соответственно увеличится в n раз.
Трансформатор может работать только в цепях переменного тока. Если первичную обмотку трансформатора подключить к источнику постоянного тока, то в его магнитопроводе образуется магнитный поток, постоянный во времени по величине и направлению. Поэтому в первичной и вторичной обмотках в установившемся режиме не индуцируются ЭДС, а, следовательно, не передаётся электрическая энергия из первичной цепи во вторичную. Такой режим опасен для трансформатора, так как из-за отсутствия ЭДС E1 в первичной обмотке ток I1 = U1 / R1 весьма большой.
Важным свойством трансформатора, используемым в устройствах автоматики и радиоэлектроники, является способность его преобразовывать сопротивление нагрузки. Если к источнику переменного тока подключить нагрузку с сопротивлением R через трансформатор с коэффициентом трансформации n, то для цепи источника
(1.5)
,
где:
Р1
– мощность, потребляемая трансформатором
от источника переменного тока, Вт;
–
мощность, потребляемая нагрузкой с
сопротивлением R от трансформатора.
Таким образом, трансформатор изменяет значение сопротивления нагрузки R в n2 раз. Это свойство широко используется при разработке электрических схем для согласования сопротивлений нагрузки с внутренним сопротивлением источников электрической энергии.
1.3. Устройство трансформаторов
Магнитная система. В зависимости от конфигурации магнитной системы, трансформаторы подразделяют на стержневые (рис. 1.3, а), броневые (рис.1.3, б) и тороидальные (рис. 1.3, в).
Стержнем называют часть магнитопровода, на которой размещают обмотки (рис. 1.3; 2). Часть магнитопровода, на которой обмотки отсутствуют, называют ярмом (рис. 1.3; 1). Трансформаторы большой и средней мощности обычно выполняют стержневыми. Они имеют лучшие условия охлаждения и меньшую массу, чем броневые.
Рис.
1.3
Для уменьшения потерь от вихревых токов, магнитопроводы трансформаторов (рис. 1.3) собирают из изолированных листов электротехнической стали толщиной 0,28-0,5 мм при частоте 50 Гц.
Трансформаторы малой мощности и микротрансформаторы часто выполняют броневыми, так как они имеют более низкую стоимость по сравнению со стержневыми трансформаторами из-за меньшего числа катушек и упрощения сборки и изготовления. Применяют также и маломощные трансформаторы стержневого типа с одной или двумя катушками (рис. 1.3; 3). Преимущество тороидальных трансформаторов – отсутствие в магнитной системе (рис. 1.3; 4) воздушных зазоров, что значительно уменьшает магнитное сопротивление магнитопровода. В трансформаторах малой мощности магнитопровод собирают из штамповых пластин П-, Ш- и О- образной формы (рис. 1.4, а, б, в).
Широкое применение получили магнитопроводы, навитые из узкой ленты электротехнической стали или из специальных железоникелевых сплавов типа пермаллой. Их можно использовать для стержневых, броневых, тороидальных и трёхфазных трансформаторов (рис 1.4 г, д, е, ж).
Рис.
1.4
Монолитность конструкции ленточного магнитопровода обеспечивается путём применения клеющих лаков и эмалей.
Для трансформаторов, работающих при частоте 400 и 500 Гц, магнитопроводы выполняют из специальных сортов электротехнической стали с малыми удельными потерями при повышенной частоте, а также из железоникелевых сплавов типа пермаллой, которые имеют большие начальную и максимальную магнитные проницаемости и позволяют получить магнитные поля с большой индукцией при сравнительно слабой напряжённости. Толщина листов составляет 0.2; 0,15; 0.1 и 0.08 мм. При частотах более10-20 кГц магнитопроводы прессуют из порошковых материалов (магнитодиэлектриков и ферритов).
Обмотки. В современных трансформаторах первичную (рис. 1.5; 1) и вторичную (рис. 1.5; 3, 4, 5) обмотки стремятся расположить для лучшей магнитной связи как можно ближе одну к другой. При этом на каждом стержне магнитопровода (рис. 1.5; 2) размещают обе обмотки либо концентрически – одну поверх другой (рис. 1.5 а), либо в виде нескольких дисковых катушек, чередующиеся по высоте стержня (рис. 1.5 б). В первом случае обмотки называют концентрическими, во втором – чередующимися. В силовых трансформаторах обычно применяют концентрические обмотки, причём ближе к стержням располагают обмотку НН, требующей меньшей изоляции относительно остова трансформатора, а снаружи – обмотку ВН.
В трансформаторах малой мощности и микротрансформаторах используют однослойные и многослойные обмотки из круглого провода с эмалевой или хлопчатобумажной изоляцией, которые наматывают на гильзу или на каркас из электрокартона (рис. 1.5; а); между слоями проводов прокладывают изоляцию из кабельной бумаги или ткани.
Рис.
1.5
В микротрансформаторах часто выполняют из алюминиевой фольги толщиной 30-20 мкм. Изоляцией здесь служит окисная плёнка фольги, которая обладает достаточной теплоёмкостью, теплопроводностью и может выдерживать рабочее напряжение до 100 В.
1.4. Идеализированный трансформатор
Для выяснения сущности физических процессов, происходящих в трансформаторе, рассмотрим идеализированный трансформатор, у которого магнитный поток Ф полностью замыкается по стальному магнитопроводу и сцеплен с обеими обмотками, а потери в стали отсутствуют. К первичной обмотке трансформатора (рис. 1.6, а) подводится синусоидальное напряжение , благодаря чему по этой обмотке проходит переменный ток, создающий переменный магнитный поток. Переменный поток наводит в обмотках трансформатора ЭДС
; .
В режиме холостого хода цепь вторичной обмотки разомкнута и ток i2=0. При этом для контура первичной обмотки трансформатора
(1.6)
,
где: u1 – мгновенное значение приложенного к первичной обмотке напряжения.
Уравнение (1.6) справедливо, если принять, что не только i2=0, но и отсутствуют потери в стали магнитопровода (от вихревых токов и гистерезиса); иначе эти потери должны были бы учитываться в виде потерь от тока, проходящего по замкнутой накоротко вторичной обмотке с большим активны сопротивлением.
Вводя в формулу (1.6) значение ЭДС , индуцируемой в первичной обмотке переменным магнитным потоком, и пренебрегая падением напряжения в активном сопротивлении первичной обмотки i1R1 из-за его малости, получаем
(1.7)
u1 + e1 = 0,
т.е. напряжение, приложенной к первичной обмотке, практически полностью уравновешивается индуцированной в этой обмотке ЭДС.
Рис.
1.6
Если питающее напряжение u1 – изменяется по синусоидальному закону , то магнитный поток также изменяется синусоидально, отставая по фазе от приложенного напряжения на угол 90°,
.
Можно показать, что постоянная интегрирования в установившемся режиме С=0.
Связь между ЭДС и магнитным потоком определяется из уравнения
,
и выражается для амплитудного значения ЭДС формулой или для действующего значения формулой
(1.8)
.
Учитывая синусоидальный характер изменения напряжения u1 и ЭДС e1, уравнение (1.7) можно представить в комплексной форме:
(1.9)
.
Уравнение (1.9) справедливо для идеализированного трансформатора, в котором пренебрежимо мало активное сопротивление обмоток и отсутствуют потери в стали магнитопровода. Однако, несмотря на принятые допущения, оно правильно определяет сущность качественных процессов, происходящих в трансформаторе, и поэтому является одним из фундаментальных в теории электрических машин. Количественные ошибки, вызванные идеализацией трансформатора, можно всегда довольно легко подсчитать.
Предположив, что насыщение в стали трансформатора отсутствует и весь магнитный поток замыкается по стальному магнитопроводу, можно считать ток первичной обмотки идеализированного трансформатора прямо пропорциональным магнитному потоку. В связи с этим, на векторной диаграмме идеализированного трансформатора в режиме холостого хода (рис 1.6 ,б) ток холостого хода Í10 изображён вектором, совпадающий по направлению с вектором магнитного потока. . На этой же диаграмме векторы ЭДС É1 и напряжения Ú1 показаны в противофазе в соответствии с уравнением (1.9), а вектор магнитного потока опережает вектор ЭДС на 90°. Поскольку магнитный поток не имеет действующего значения, на диаграмме показано его амплитудное значение. Там же показан вектор ЭДС É2 совпадающий по фазе с вектором É1, так как ЭДС É2 индуцируется тем же самым магнитным потоком, что и É1, и может быть определена по формуле
(1.10)
.
При работе под нагрузкой для первичной обмотки идеализированного трансформатора можно написать уравнение