Файл: Снижение содержания серы в дизельном топливе может быть достигнуто путем гидроочистки, проводимой в более жестких условиях.doc
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 25.10.2023
Просмотров: 90
Скачиваний: 1
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
улучшаются до полного испарения сырья; при наличии жидкой фазы транспортирование водорода к поверхности катализатора обычно является лимитирующей стадией процесса и повышение парциального давления водорода увеличивает скорость диффузии за счёт уменьшения доли сырья, находящегося в жидкой фазе, т.е. уменьшения толщины плёнки жидкости на поверхности катализатора. После полного испарения сырья глубина гидроочистки с увеличением парциального давления водорода при неизменном общем давлении уменьшается вследствие снижения парциального давления сырья (рис. 3) [8].
1 – жидкофазный процесс; 2 – газофазный процесс.
При гидроочистке дистиллятов вторичного происхождения – газойлей каталитического крекинга и коксования – глубина обессеривания, равная 90%, достигается при парциальном давлении водорода около 2 – 3 МПа. Однако эти продукты имеют низкие цетановые числа. Для получения дизельного топлива с цетановым числом не менее 45 требуется изменение условий гидроочистки и в первую очередь величины парциального давления водорода, т.е. необходим процесс гидрирования.
На рисунке 3 приведены основные результаты гидроочистки фракции 200 – 350С газойля каталитического крекинга, имеющего следующую характеристику: содержание серы – 1,53 %(масс.), количество сульфирующихся углеводородов – 47 %(об.), йодное число – 47, цетановое число – 37. Гидроочистку проводили на алюмокобальтмолибденовом катализаторе при температуре 380С и объёмной скорости подачи сырья -
1,0 ч-1 [1].
1 – глубина обессеривания; 2 – содержание сульфирующихся углеводородов; 3 – цетановое число
Рисунок 4 – Влияние парциального давления водорода на глубину гидроочистки газойля каталитического крекинга.
Из рисунка 4 видно, что глубина обессеривания продукта, равная 90% (содержание серы 0,15 – 0,2 %(масс.)), достигается при парциальном давлении водорода около 2 МПа, т.е. гидрообессеривание протекает достаточно полно в условиях, аналогичных условиям гидроочистки прямогонных фракций.
Низкосернистые и достаточно высокоцетановые топлива можно получить при гидроочистке смеси дистиллятов прямой перегонки и вторичного происхождения. В этом случае достаточно приемлемые результаты достигаются при парциальном давлении водорода 3 – 3,5 МПа, т.е. облагораживание таких смесей можно проводить на промышленных установках гидроочистки, рассчитанных на общее давление 5 МПа [1].
Объёмная скорость подачи сырья в зависимости от его качества, требуемой глубины очистки и условий процесса может изменяться в очень широких пределах – от 0,5 до 10 ч-1. Для тяжёлого сырья и сырья вторичного происхождения объёмная скорость наименьшая.
О влиянии объёмной скорости подачи сырья на процесс гидроочистки смеси дистиллятов прямой перегонки и каталитического крекинга можно судить по данным рисунков 5 и 6 [1].
Рисунок 5 – Влияние объёмной скорости подачи сырья на глубину гидрирования непредельных.
Как видно из рисунков 5 и 6, изменение степени гидрирования непредельных углеводородов в интервале объёмных скоростей подачи сырья от 1,0 до 15,0 ч-1 при общем давлении 4 МПа и подаче газа, содержащего 65 %(об.) водорода, 500м3/м3 сырья происходит по сравнению с гидрированием сернистых соединений более плавно. При температуре около 300С скорости гидрирования непредельных углеводородов и сернистых соединений примерно одинаковы, при более высоких температурах скорость гидрирования сернистых соединений выше.
Рисунок 6 – Влияние объёмной скорости подачи сырья на глубину обессеривания
Характеристика сырья и продуктов гидроочистки
Глубина гидроочистки дистиллятов от серы и других соединений зависит от типа углеводородного сырья, температуры процесса, парциального давления водорода и его кратности циркуляции, объемной скорости подачи сырья и других факторов.
Гидроочистке подвергают как прямогонные фракции (бензин, реактивное и дизельное топливо, вакуумные газойли), так и дистилляты вторичного происхождения (лёгкая фракция пиролизной смолы, бензины, лёгкие газойли коксования и каталитического крекинга).
С утяжелением сырья степень его очистки в заданных условиях процесса снижается. Происходит это по следующим причинам. С повышением средней молярной массы доля серы, содержащейся в устойчивых относительно гидрирования структурах, увеличивается. По мере утяжеления сырья всё большая его часть находится в условиях гидроочистки в жидкой фазе, что затрудняет транспортирование водорода к поверхности катализатора. При жидкофазной гидроочистке с утяжелением сырья скорость диффузии водорода через плёнку жидкости на катализаторе снижается, так как повышается вязкость и снижается растворимость водорода при данных условиях. Увеличение в сырье количества полициклических ароматических углеводородов, смол и асфальтенов, прочно адсорбирующихся на катализаторе и обладающих высокой устойчивостью относительно гидрирования, также снижает глубину очистки.
При одинаковом фракционном составе очистка от серы продуктов вторичного происхождения (коксования, каталитического крекинга) проходит значительно труднее. Это связано с тем, что подвергшиеся крекингу продукты содержат гетероатомы в структуре наиболее термически стабильных, трудно гидрирующихся соединений. Кроме того, продукты вторичного происхождения содержат большое количество ароматических и непредельных углеводородов, обладающих высокой адсорбируемостью на катализаторе и тормозящих в результате гидрирование гетероорганических соединений.
Качество получаемой продукции, то есть дизельного топлива, должно соответствовать показателям, приведенным ниже.
Фракция дизельного топлива гидроочищенная
Бензин-отгон.
Сероводород.
Углеводородный газ (после очистки).
1.3. Катализаторы гидроочистки
Ужесточающиеся требования к качеству нефтепродуктов, в первую очередь по снижению содержания в среднедистиллятных фракциях серы и ароматических углеводородов, заставляют искать более эффективные катализаторы гидроочистки. Катализаторы гидроочистки представляют собой сочетание окислов активных компонентов (никель, кобальт, молибден и др.) с носителем, в качестве которого чаще всего используют активную окись алюминия. Носитель в составе катализатора гидроочистки играет роль не только инертного разбавителя, но и участвует в формировании активных фаз, а также служит в качестве структурного промотора, создающего специфическую пористую структуру, оптимальную для переработки конкретного сырья.
Носителем служит оксид алюминия. Катализаторы выпускают в виде частиц неправильной цилиндрической формы. В настоящее время применяются катализаторы на цеолитной основе. Катализатор АКМ имеет высокую активность и селективность по целевой реакции обессеривания, достаточно активен в гидрировании непредельных соединений. Катализатор АНМ проявляет большую активность при гидрировании ароматических и азотистых соединений.
Наиболее распространённые для гидроочистки в отечественной и зарубежной практике катализаторы приведены в таблице 6 [9].
Таблица 6 – Катализаторы гидроочистки нефтяных фракций
1 – жидкофазный процесс; 2 – газофазный процесс.
Рисунок 3 – Влияние кратности циркуляции водорода на полноту обессеривания газойля 200 – 350С прямой перегонки
При гидроочистке дистиллятов вторичного происхождения – газойлей каталитического крекинга и коксования – глубина обессеривания, равная 90%, достигается при парциальном давлении водорода около 2 – 3 МПа. Однако эти продукты имеют низкие цетановые числа. Для получения дизельного топлива с цетановым числом не менее 45 требуется изменение условий гидроочистки и в первую очередь величины парциального давления водорода, т.е. необходим процесс гидрирования.
На рисунке 3 приведены основные результаты гидроочистки фракции 200 – 350С газойля каталитического крекинга, имеющего следующую характеристику: содержание серы – 1,53 %(масс.), количество сульфирующихся углеводородов – 47 %(об.), йодное число – 47, цетановое число – 37. Гидроочистку проводили на алюмокобальтмолибденовом катализаторе при температуре 380С и объёмной скорости подачи сырья -
1,0 ч-1 [1].
1 – глубина обессеривания; 2 – содержание сульфирующихся углеводородов; 3 – цетановое число
Рисунок 4 – Влияние парциального давления водорода на глубину гидроочистки газойля каталитического крекинга.
Из рисунка 4 видно, что глубина обессеривания продукта, равная 90% (содержание серы 0,15 – 0,2 %(масс.)), достигается при парциальном давлении водорода около 2 МПа, т.е. гидрообессеривание протекает достаточно полно в условиях, аналогичных условиям гидроочистки прямогонных фракций.
Низкосернистые и достаточно высокоцетановые топлива можно получить при гидроочистке смеси дистиллятов прямой перегонки и вторичного происхождения. В этом случае достаточно приемлемые результаты достигаются при парциальном давлении водорода 3 – 3,5 МПа, т.е. облагораживание таких смесей можно проводить на промышленных установках гидроочистки, рассчитанных на общее давление 5 МПа [1].
Объёмная скорость подачи сырья в зависимости от его качества, требуемой глубины очистки и условий процесса может изменяться в очень широких пределах – от 0,5 до 10 ч-1. Для тяжёлого сырья и сырья вторичного происхождения объёмная скорость наименьшая.
О влиянии объёмной скорости подачи сырья на процесс гидроочистки смеси дистиллятов прямой перегонки и каталитического крекинга можно судить по данным рисунков 5 и 6 [1].
Рисунок 5 – Влияние объёмной скорости подачи сырья на глубину гидрирования непредельных.
Как видно из рисунков 5 и 6, изменение степени гидрирования непредельных углеводородов в интервале объёмных скоростей подачи сырья от 1,0 до 15,0 ч-1 при общем давлении 4 МПа и подаче газа, содержащего 65 %(об.) водорода, 500м3/м3 сырья происходит по сравнению с гидрированием сернистых соединений более плавно. При температуре около 300С скорости гидрирования непредельных углеводородов и сернистых соединений примерно одинаковы, при более высоких температурах скорость гидрирования сернистых соединений выше.
Рисунок 6 – Влияние объёмной скорости подачи сырья на глубину обессеривания
Характеристика сырья и продуктов гидроочистки
Глубина гидроочистки дистиллятов от серы и других соединений зависит от типа углеводородного сырья, температуры процесса, парциального давления водорода и его кратности циркуляции, объемной скорости подачи сырья и других факторов.
Гидроочистке подвергают как прямогонные фракции (бензин, реактивное и дизельное топливо, вакуумные газойли), так и дистилляты вторичного происхождения (лёгкая фракция пиролизной смолы, бензины, лёгкие газойли коксования и каталитического крекинга).
С утяжелением сырья степень его очистки в заданных условиях процесса снижается. Происходит это по следующим причинам. С повышением средней молярной массы доля серы, содержащейся в устойчивых относительно гидрирования структурах, увеличивается. По мере утяжеления сырья всё большая его часть находится в условиях гидроочистки в жидкой фазе, что затрудняет транспортирование водорода к поверхности катализатора. При жидкофазной гидроочистке с утяжелением сырья скорость диффузии водорода через плёнку жидкости на катализаторе снижается, так как повышается вязкость и снижается растворимость водорода при данных условиях. Увеличение в сырье количества полициклических ароматических углеводородов, смол и асфальтенов, прочно адсорбирующихся на катализаторе и обладающих высокой устойчивостью относительно гидрирования, также снижает глубину очистки.
При одинаковом фракционном составе очистка от серы продуктов вторичного происхождения (коксования, каталитического крекинга) проходит значительно труднее. Это связано с тем, что подвергшиеся крекингу продукты содержат гетероатомы в структуре наиболее термически стабильных, трудно гидрирующихся соединений. Кроме того, продукты вторичного происхождения содержат большое количество ароматических и непредельных углеводородов, обладающих высокой адсорбируемостью на катализаторе и тормозящих в результате гидрирование гетероорганических соединений.
Качество получаемой продукции, то есть дизельного топлива, должно соответствовать показателям, приведенным ниже.
Фракция дизельного топлива гидроочищенная
| Показатели качества продукта: | |||
---|---|---|---|---|
| Содержание воды и механических примесей | Отсутствие | ||
| Фракционный состав 50% отгоняется при температуре не выше 90% отгоняется при температуре не выше 96% отгоняется при температуре не выше | 280°С 340°С 360°С | ||
| Сероводородная коррозия | Отсутствие | ||
| Испытание на медной пластинке | Выдерживает | ||
| Температура вспышки, определяемая в закрытом тигле, С Не ниже | 62 | ||
| Массовая доля общей серы,ppm масс. Не более | 10 | ||
| Азот, ppm масс. Не более | 20 | ||
| Йодное число, гр/100гр. | 0,5 | ||
| Плотность, кг/м3 Не более | 834 | ||
| Применяется как компонент дизельного топлива. | |||
| | |||
| | |||
| | |||
| | |||
| | |||
| |
Показатели качества продукта: | |
Содержание воды и механических примесей | Отсутствие |
Испытание на медную пластинку | Выдерживает |
Температура начала кипения, С Не ниже | 40 |
Температура конца кипения, С Не выше | 180 |
Применяется как компонент автомобильных бензинов. |
Бензин-отгон.
Сероводород.
Показатели качества продукта: | |
Содержание сероводорода, % объемных не менее | 98,0 |
Применяется в качестве сырья для производства серной кислоты. |
Углеводородный газ (после очистки).
Показатели качества продукта: | |
Содержание сероводорода, % объемных | Не более 0,20 |
Применяется в качестве печного топлива на установке. |
1.3. Катализаторы гидроочистки
Ужесточающиеся требования к качеству нефтепродуктов, в первую очередь по снижению содержания в среднедистиллятных фракциях серы и ароматических углеводородов, заставляют искать более эффективные катализаторы гидроочистки. Катализаторы гидроочистки представляют собой сочетание окислов активных компонентов (никель, кобальт, молибден и др.) с носителем, в качестве которого чаще всего используют активную окись алюминия. Носитель в составе катализатора гидроочистки играет роль не только инертного разбавителя, но и участвует в формировании активных фаз, а также служит в качестве структурного промотора, создающего специфическую пористую структуру, оптимальную для переработки конкретного сырья.
Для гидроочистки применяют катализаторы на основе оксидов металлов VII и VIII групп (никель, кобальт, молибден, вольфрам). В промышленности используют алюмокобальтмолибденовый (АКМ) и алюмоникельмолибденовый (АНМ) катализаторы. В алюмоникельмолибденовый катализатор на силикатной основе для увеличения прочности вводят диоксид кремния (АНМС).
Носителем служит оксид алюминия. Катализаторы выпускают в виде частиц неправильной цилиндрической формы. В настоящее время применяются катализаторы на цеолитной основе. Катализатор АКМ имеет высокую активность и селективность по целевой реакции обессеривания, достаточно активен в гидрировании непредельных соединений. Катализатор АНМ проявляет большую активность при гидрировании ароматических и азотистых соединений.
Наиболее распространённые для гидроочистки в отечественной и зарубежной практике катализаторы приведены в таблице 6 [9].
Таблица 6 – Катализаторы гидроочистки нефтяных фракций
Марка катали-затора | Характеристика | Сырьё | Форма | Тип носи-теля | Актив-ные компо-ненты | ||
AKZO Nobel | |||||||
KF–845 | Высокая обессериваю-щая и деазотирующая активность | От бензина до вакуумного газойля | Четырёх-листник | Al2O3 | NiMo | ||
KF–752 | Высокая обессеривающая активность | От дизельного топлива до ваку-умного газойля | Четырёх-листник | Al2O3 | CoMo | ||
KF–747 | Глубокое гидрообессеривание | От дизельного топлива до ваку-умного газойля | Четырёх-листник | Al2O3 | CoMo | ||
KF–645 | Глубокое гидрообессеривание, деметализация, лёгкий гидрокрекинг | От бензина до вакуумного газойля | Цилиндр | Al2O3 | NiCoMo | ||
«Элетрогорский институт нефтепереработки» | |||||||
ГО–70 | Высокая обессериваю-щая и деазотирующая активность | От бензина до вакуумного газойля | Цилиндр, трилистник | Al2O3 | CoMo | ||
ГО–86 | Высокая обессериваю-щая активность | Среднедистил-лятные фракции | Цилиндр | Al2O3 | CoMo | ||
ГО–30-7 | Высокая обессериваю-щая и деазотирующая активность | Бензины | Цилиндр | Al2O3 | NiMo | ||
ГО–38а | Обессеривание и насы-щение ароматических углеводородов | Масляные дистилляты | Цилиндр | Al2O3 | NiMo | ||
КПС–16Н | Высокая обессери-вающая активность | Дизельные фракции | Цилиндр | Al2O3 | NiMo | ||
ДТ–005К, ДТ–005Н | Глубокое гидрообессеривание | Дизельные фракции | Цилиндр | Al2O3 | CoMo, NiMo | ||
Criterion Catalyst | |||||||
С–448 | Для получения низкосернистого дизельного топлива | Средние дистил-ляты, вакуумный газойль | Сформо-ванные экструдаты | Al2O3 | CoMo | ||
С–447 | Глубокое гидрообессеривание | Лёгкий и тяжё-лый вакуумный газойль, остатки | Сформо-ванные экструдаты | Al2O3 | CoMo | ||
HDS–3 | Насыщение ароматических углеводородов | От бензина до вакуумного газойля | Сформо-ванные экструдаты | Al2O3 | NiMo | ||
HDS–22 | Насыщение ароматических углеводородов | Бензин, сырьё каталитического крекинга | Сформо-ванные экструдаты | Al2O3 | CoMo | ||
C–424 | Высокая гидрообессеривающая и гидродеазотирующая активность, насыщение ароматических углеводородов | Предваритель-ная гидроочистка сырья каталитического крекинга | Сформо-ванные экструдаты | Al2O3 | NiMo | ||
«Всероссийский институт по переработке нефти» | |||||||
ГS–168 | Обессеривающая активность | Бензин, дизельная фракция | Цилиндр | Al2O3+ SiO2 | NiMo | ||
ГДК–202 | Высокая обессеривающая активность | Среднедистил-лятные фракции | Цилиндр | Al2O3+ цеолит | NiMo | ||
ГДК–205 | Высокая обессеривающая активность | Среднедистил-лятные фракции | Цилиндр | Al2O3+ цеолит | NiMo | ||
ГДК–202П | Высокая обессеривающая активность | Среднедистил-лятные фракции | Цилиндр | Al2O3+ цеолит | CoMo | ||
ГП–534 | Высокая обессеривающая активность | От бензина до вакуумного газойля | Цилиндр | Al2O3 | NiMo | ||
Procatalyse | |||||||
HPC–60 | Высокая обессеривающая активность | От бензина до вакуумного газойля | Лист клевера | Al2O3 | - | ||
HR–306C | Гидрообессери-вание, гидро-деазотирование | От бензина до вакуумного газойля | Экструдаты | Al2O3 | - | ||
Haldor Topsoe | |||||||
TK– 524 | Глубокое гидрообессеривание | Лёгкий и тяже-лый вакуумные газойли | Трёхлист-ник | Al2O3 | CoMo | ||
TK–907, TK– 908 | Снижение ароматических углеводородов, низкая сероустойчивость | Лёгкий и тяже-лый вакуумные газойли | Трёхлист-ник | Патент | Патент | ||
Orient catalysts Co. Ltd | |||||||
HOP–412 | Высокое гидродеазотирование и гидрообессеривание | От бензина до вакуумного газойля | Сформован-ные экструдаты | Al2O3 | NiMo | ||
HOP–463 | Высокое гидродеазотирование и гидрообессеривание | От бензина до котельного топлива | Сформован-ные экструдаты | Al2O3 | CoMo |