Файл: Исследование микроструктуры высокомарганцевой стали, модифицированной ультрадисперсными порошками, на основе соединений тугоплавких металлов.docx
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 26.10.2023
Просмотров: 63
Скачиваний: 3
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
, а повышение количества модификатора свыше 0,4 % - способствует формированию комплексных карбидов, т.е. легирует избыточную фазу.
Список литературы
1. Bouaziz O, Allain S, Scott C P, et al. High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships. Current Opinion in Solid State and Materials Science, 2011, 15(4): 141–168.
2. Yan Weilin, Fang Liang, Sun Kun, et al. Thermodynamics of nanocrystilline formation in surface layer of Hadfield steel by shot peening. Materials Science and Engineering A, 2007, 445–446(6): 392–397.
3. Canadinc D, Sehitoglu H, Maier H J. The role of dense dislocation walls on the deformation response of aluminum alloyed hadfield steel polycrystals. Materials Science and Engineering A, 2007, 454–455(16): 662–666.
4. Zhang F C, Yang Z N, Qian L H, et al. High speed pounding: A novel technique for the preparation of a thick surface layer with a hardness gradient distribution on Hadfield steel. Scripta Materialia, 2011, 64(6): 560–563.
5. Wen Y H, Peng H B, Si H T, et al. A novel high manganese austenitic steel with higher work hardening capacity and much lower impact deformation than Hadfield manganese steel. Materials and Design, 55(6): 798-804.
6. Abbasi Majid, Kheirandish Shahram, Kharrazi Yosef, et al. The fracture and plastic deformation of aluminum alloyed Hadfield steels. Materials Science and Engineering A, 2009, 513–514(11): 72–76.
7. Radis R, Schlacher C, Kozeschnik E, et al. Loss of Ductility Caused by AlN Precipitation in Hadfield Steel. Metallurgical and Materials Transactions A, 2012, 43(4): 1132–1139.
8. Xiong Renlong, Peng Huabei, Si Haitao, et al. Thermodynamic calculation of stacking fault energy of the Fe-Mn-Si-C high manganese steels. Materials Science and Engineering A, 2014, 598: 376–386.
9. Karaman I, Sehitoglu H, Chumlyakov Y I, et al. Extrinsic stacking faults and twinning in Hadfield manganese steel single crystals. Scripta Materialia, 2001, 44(2): 337–343.
10. Astafurova E G, Tukeeva M S, Zakharova G G, et al. The role of twinning on microstructure and mechanical response of severely deformed single crystals of high-manganese austenitic steel. Materials Characterization, 2011, 62(6): 588–592.
11. Efstathiou C, Sehitoglu H. Strain hardening and heterogeneous deformation during twinning in Hadfield steel. Acta Materialia, 2010, 58(5): 1479–1488.
12. Yan Weilin, Fang Liang, Zheng Zhanguang, et al. Effect of surface nanocrystallization on abrasive wear properties in Hadfield steel. Tribology International, 2009, 42(5): 634–641.
13. Yan Weilin, Fang Liang, Sun Kun, et al. Effect of surface work hardening on wear behavior of Hadfield steel. Materials Science and Engineering A, 2007, 460–461(4): 542–549.
14. V. M. Kolokoltsev, K. N. Vdovin, D. A. Gorlenko, et al. Calculation of stacking fault energy and its influence on abrasive wear resistance of Hadfield cast steel cooled at different rates. CIS Iron and Steel Review. 2016, 11:. 35-40.
15. Ali Nasajpour, AmirHossein Kokabi, Parviz Davami, et al. Effect of molybdenum on mechanical and abrasive wear properties of coating of as-weld hadfield steel with flux-cored gas tungsten arc welding. Journal of Alloys and Compounds, 2016, 659: 262–269.
16. Ali Nasajpour, AmirHossein Kokabi, Parviz Davami, et al. Effect of molybdenum on mechanical and abrasive wear properties of coating of as-weld hadfield steel with flux-cored gas tungsten arc welding. Journal of Alloys and Compounds, 2016, 659: 262–269.
17. Jiang Qichuan, He Zhenming, Cui Donghuan, et al. Abrasion-resistant as-cast manganese steel with nodular carbide modified by calcium. Journal of Materials Science Letters, 1990, 9(5): 616–617.
18. Zuidema B K, Subramanyam D K, Leslie W C. The Effect of Aluminum on the Work Hardening and Wear Resistance of Hadfield Manganese Steel. Metallurgical and Materials Transactions A, 1987, 18(9): 1629–1639.
19. Dastur Y N, Leslie W C. Mechanism of Work Hardening in Hadfield Manganese Steel. Metallurgical Transactions A, 1981, 12(5): 749–759.
20. K. N. Vdovin, D. A. Gorlenko, N. A. Feoktistov. Characteristics of excess phase in cast high-manganese steel. Steel in Translation, 2016, 46(7): 484–488.
21. K.N. Vdovin, N.A.Feoktistov, D.A. Gorlenko. The effect of the cast high-manganese steel primary structure on its properties. Materials Science Forum, 2016, 870: 339-344.
22. Idrissi H, Renard K, Ryelandt L, et al. On the mechanism of twin formation in Fe-Mn-C TWIP steels. Acta Materialia, 2010, 58(7): 2464–2476.
23. Gorlenko, D., Vdovin, K., Feoktistov, N. Mechanisms of cast structure and stressed state formation in Hadfield steel. China Foundry, 2016, 13(6): 433-442.
24. Owen W S, Grujicic M. Strain aging of austenitic Hadfield manganese steel. Acta Materialia, 1998, (47)1: 111–126.
Список литературы
1. Bouaziz O, Allain S, Scott C P, et al. High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships. Current Opinion in Solid State and Materials Science, 2011, 15(4): 141–168.
2. Yan Weilin, Fang Liang, Sun Kun, et al. Thermodynamics of nanocrystilline formation in surface layer of Hadfield steel by shot peening. Materials Science and Engineering A, 2007, 445–446(6): 392–397.
3. Canadinc D, Sehitoglu H, Maier H J. The role of dense dislocation walls on the deformation response of aluminum alloyed hadfield steel polycrystals. Materials Science and Engineering A, 2007, 454–455(16): 662–666.
4. Zhang F C, Yang Z N, Qian L H, et al. High speed pounding: A novel technique for the preparation of a thick surface layer with a hardness gradient distribution on Hadfield steel. Scripta Materialia, 2011, 64(6): 560–563.
5. Wen Y H, Peng H B, Si H T, et al. A novel high manganese austenitic steel with higher work hardening capacity and much lower impact deformation than Hadfield manganese steel. Materials and Design, 55(6): 798-804.
6. Abbasi Majid, Kheirandish Shahram, Kharrazi Yosef, et al. The fracture and plastic deformation of aluminum alloyed Hadfield steels. Materials Science and Engineering A, 2009, 513–514(11): 72–76.
7. Radis R, Schlacher C, Kozeschnik E, et al. Loss of Ductility Caused by AlN Precipitation in Hadfield Steel. Metallurgical and Materials Transactions A, 2012, 43(4): 1132–1139.
8. Xiong Renlong, Peng Huabei, Si Haitao, et al. Thermodynamic calculation of stacking fault energy of the Fe-Mn-Si-C high manganese steels. Materials Science and Engineering A, 2014, 598: 376–386.
9. Karaman I, Sehitoglu H, Chumlyakov Y I, et al. Extrinsic stacking faults and twinning in Hadfield manganese steel single crystals. Scripta Materialia, 2001, 44(2): 337–343.
10. Astafurova E G, Tukeeva M S, Zakharova G G, et al. The role of twinning on microstructure and mechanical response of severely deformed single crystals of high-manganese austenitic steel. Materials Characterization, 2011, 62(6): 588–592.
11. Efstathiou C, Sehitoglu H. Strain hardening and heterogeneous deformation during twinning in Hadfield steel. Acta Materialia, 2010, 58(5): 1479–1488.
12. Yan Weilin, Fang Liang, Zheng Zhanguang, et al. Effect of surface nanocrystallization on abrasive wear properties in Hadfield steel. Tribology International, 2009, 42(5): 634–641.
13. Yan Weilin, Fang Liang, Sun Kun, et al. Effect of surface work hardening on wear behavior of Hadfield steel. Materials Science and Engineering A, 2007, 460–461(4): 542–549.
14. V. M. Kolokoltsev, K. N. Vdovin, D. A. Gorlenko, et al. Calculation of stacking fault energy and its influence on abrasive wear resistance of Hadfield cast steel cooled at different rates. CIS Iron and Steel Review. 2016, 11:. 35-40.
15. Ali Nasajpour, AmirHossein Kokabi, Parviz Davami, et al. Effect of molybdenum on mechanical and abrasive wear properties of coating of as-weld hadfield steel with flux-cored gas tungsten arc welding. Journal of Alloys and Compounds, 2016, 659: 262–269.
16. Ali Nasajpour, AmirHossein Kokabi, Parviz Davami, et al. Effect of molybdenum on mechanical and abrasive wear properties of coating of as-weld hadfield steel with flux-cored gas tungsten arc welding. Journal of Alloys and Compounds, 2016, 659: 262–269.
17. Jiang Qichuan, He Zhenming, Cui Donghuan, et al. Abrasion-resistant as-cast manganese steel with nodular carbide modified by calcium. Journal of Materials Science Letters, 1990, 9(5): 616–617.
18. Zuidema B K, Subramanyam D K, Leslie W C. The Effect of Aluminum on the Work Hardening and Wear Resistance of Hadfield Manganese Steel. Metallurgical and Materials Transactions A, 1987, 18(9): 1629–1639.
19. Dastur Y N, Leslie W C. Mechanism of Work Hardening in Hadfield Manganese Steel. Metallurgical Transactions A, 1981, 12(5): 749–759.
20. K. N. Vdovin, D. A. Gorlenko, N. A. Feoktistov. Characteristics of excess phase in cast high-manganese steel. Steel in Translation, 2016, 46(7): 484–488.
21. K.N. Vdovin, N.A.Feoktistov, D.A. Gorlenko. The effect of the cast high-manganese steel primary structure on its properties. Materials Science Forum, 2016, 870: 339-344.
22. Idrissi H, Renard K, Ryelandt L, et al. On the mechanism of twin formation in Fe-Mn-C TWIP steels. Acta Materialia, 2010, 58(7): 2464–2476.
23. Gorlenko, D., Vdovin, K., Feoktistov, N. Mechanisms of cast structure and stressed state formation in Hadfield steel. China Foundry, 2016, 13(6): 433-442.
24. Owen W S, Grujicic M. Strain aging of austenitic Hadfield manganese steel. Acta Materialia, 1998, (47)1: 111–126.