Файл: Основны тенденции формирования науки будущего. по дисциплине.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 29.10.2023

Просмотров: 182

Скачиваний: 14

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


Это предел нашей способности познания. Этот вывод просто гениален с точки зрения философии и математической логики. Это величайшее открытие XX века, которое можно сравнить только с теорией относительности и квантовой механикой. В отличие от физики этот вывод был получен посредством простого размышления.

В теории сложных динамических систем указываются точные границы сложности для возможных прогнозов, что демонстрируют модели динамических систем в природе, экономике и обществе. Эти проблемы я рассматриваю в своей книге о сложных системах, которая была переведена на русский язык. Непредсказуемость всегда также означает ограничение возможностей управления. (Представьте себе, например, сложность нашего мозга). Поэтому подобные рассуждения имеют не только теоретическое, но и огромное практическое значение.


  1. Основные характеристики современной постне классической науки:

  • процессы дифференциации и интеграции в современной науке; системный подход;

  • синергетическая парадигма как стратегия новых научных поисков;

  • глобальный эволюционизм: синтез эволюционного и системного подходов.

  1. Проблемы биосферы и экологии в современной науке:

  • учение В.И. Вернадского о биосфере и ноосфере;

  • экологические концепции современной науки.

  1. Наука и паранаука.


1.2 Происходящие в современной науке процессы можно характеризовать с точки зрения как формы, так и содержания

 

С точки зрения организации и формы в современной науке происходят процессы дифференциации и интеграции.

 

Дифференциация научного знания связана с возникновением науки в XVII-XVIII вв., появлением новых научных дисциплин со своим предметом и специфическими средствами познания (как известно, в античной философии не сложилось разграничения между отдельными областями исследования, не существовало отдельных научных дисциплин, за исключением математики и астрономии).

 

Первыми, оформившимися в научные дисциплины, были небесная и земная механика, наряду с математикой и астрономией. В дальнейшем процесс дифференциации научного знания углублялся и расширялся с появлением новых научных дисциплин, таких как химия, геология, биология и др. Сформировались образ науки как дисциплинарно организованного знания и дисциплинарный подход, ориентированный на изучение специфических, частных закономерностей и явлений.

В связи с обозначенными моментами назрела другая, противоположная дифференциации, тенденция – интеграция, позволяющая изучать сразу многие процессы и явления с единой, общей точки зрения. Кроме того, в процессе интеграции становится возможным использование методов одной науки в другой, в результате чего возникли такие междисциплинарные науки, как астрофизика, биофизика, биохимия, геохимия и т.д. В настоящее время процесс интеграции в науке усиливается, появляются все новые синтетические науки, позволяющие рассматривать объекты и явления в их глубинных взаимосвязях и, одновременно, с точки зрения общих закономерностей и тенденций.

 

Процесс дифференциации и интеграции в современной науке дополняется системным подходом, при котором предметы и явления окружающего нас мира рассматриваются как части и элементы единого целого, взаимодействующие друг с другом и приводящие к появлению новых свойств системы, отсутствующих у отдельных ее элементов.

 

Системный подход, возникший сравнительно недавно (50-е гг. XX в.), распространился не только на естественные, но и на социально-гуманитарные науки. Главное достоинство системного принципа заключается в том, что мир в нем предстает как многообразие систем разнообразного конкретного содержания, объединенных в рамки единого целого – Вселенной.

 

Таким образом, современная наука опирается на такие подходы и методы исследовательской деятельности, как интегративный, междисциплинарный, комплексный, системный способы. К их числу относится и эволюционный подход, который в современной науке приобрел статус глобального эволюционизма. О содержательном аспекте этих методов речь пойдет дальше.

 

1.3 В числе междисциплинарных исследовательских направлений сегодня важное место занимает синергетика.

 

Термин «синергетика» (от греч. synergeticos – совместно действующий) ввел в научный обиход немецкий физик Г.Хакен (в работе «Синергетика» он поясняет, что назвал так новую дисциплину потому, что хотел указать на то, что для исследования процессов самоорганизации в сложных системах необходимо кооперирование многих дисциплин. – Прим. автора).

 

Что такое сложные системы? К ним относятся, к примеру, системы живой природы, некоторые социальные и гуманитарные системы. Их отличительными особенностями являются динамичность и перестройка структурных и организационных форм. Поэтому их определяют как самоорганизующиеся системы.



 

Самоорганизация предполагает изменение прежней организации, порядка или структуры и появление нового на основе взаимодействия элементов системы с внешней средой. Главный вопрос, на который призвана ответить синергетика, заключается в следующем: как, каким образом возникают устойчивость и порядок в таких системах, если по своей сути они неустойчивы, динамичны?

 

Для этого необходимы следующие условия:

 

  1. Система должна быть открытой по отношению к окружающей ее среде, с которой каждая частица системы взаимодействует, получая от нее приток энергии (или вещества).

  2. Система включает в себя неустойчивые моменты, случайные отклонения, флуктуации, которые, при условии открытости системы, не подавляются ею, а накапливаются, возрастают и со временем приводят систему к «расшатыванию», к распаду прежнего и возникновению нового порядка. Бельгийский ученый (русский по происхождению) И.Пригожин характеризует этот принцип как принцип образования порядка через флуктуации. Флуктуации имеют случайный характер, из чего следует, что появление нового в мире всегда связано с действием случайных факторов.

Синергетическая концепция (теория) нашла широкое применение не только в естественных и гуманитарных науках, она позволяет дать ответы на глобальные общенаучные и мировоззренческие вопросы. Состоит ли окружающий нас мир из разнообразных по содержанию и форме самоорганизующихся систем? Как возникла живая природа – как результат стихийно сложившихся условий, обстоятельств и факторов, как об этом говорит классическая биология, или она – результат процесса самоорганизации, начавшегося в неживой природе? Как организация и самоорганизация проявляют себя в обществе?

Синергетическая парадигма позволила разрешить главное противоречие, существующее между неживой и живой природой, между микро- и макроуровнем, основанное на противопоставлении классической термодинамики и эволюционного учения Ч.Дарвина. Она доказала (экспериментально и теоретически), что при наличии определенных условий самоорганизация может происходить уже в простейших физико-химических и других системах неорганической природы.

Какое значение имеют эти открытия для практической жизни и деятельности человека и человечества?

  1. Зная, как устроено сложное в мире, по каким законам оно функционирует, становится возможным вписывать свои действия в универсальные цепи самоорганизации.

  2. Синергетическая парадигма позволяет рассматривать окружающий человека мир не как оппозицию «субъект – мир», а как сосуществование человека вместе с миром и внутри, поскольку сам человек – самоорганизующаяся система. Если человек не внеположен миру, а находится внутри него, он обязан уважительно и с осторожностью к нему относиться, поскольку мир непредсказуем и человек зачастую бессилен прогнозировать и контролировать его. Человек в этом мире вовлечен в иерархию ситуаций, а потому он всегда живет в ситуации выбора вариантов поведения, ответственен за свои поступки.



 

1.4 Идеи эволюции возникли в науке приблизительно в XVIII-XIX вв.
(Это гипотеза Канта-Лапласа о возникновении Солнечной системы из туманности, теория геологической эволюции Ч.Лайеля, наконец, эволюционная теория Ч.Дарвина в биологии). Данные идеи на сегодняшний день приобрели в науке XX – XXI вв. характер глобальной эволюции Вселенной. Во многом этому способствовал и системный подход, и принципы самоорганизации открытых систем.
В конце XIX – начале XX вв. усилиями таких ученых, как русский физик А.А. Фридман, американский астроном Э.П. Хаббл, была теоретически обоснована идея расширяющейся Вселенной. В частности, Э.П. Хаббл обнаружил факт удаления галактик от наблюдателя на основе наблюдений за процессом смещения света, идущего от галактик, в сторону красного конца спектра (эффект красного смещения).
Идея космической эволюции Вселенной указывает на тот факт, что процесс ее образования проходит определенные этапы: от образования атомов и молекул (микроэволюция) до возникновения макротел и их систем, образования галактик (макроэволюция).
Разрушение симметрии привело не только к возникновению микро- и макрообъектов, оно способствовало дальнейшему формированию эволюционных процессов как на уровне микро-, так и макромира. Эволюция в микромире создала условия для развертывания эволюции в макромире. В свою очередь, это привело к биологической эволюции – эволюции сложноорганизованных живых систем.
Системный подход к глобальной эволюции дополняется синергетическим принципом, объясняющим переход от одних систем и структур к другим посредством процесса самоорганизации. Синергетика разрушила представление о стационарном характере Вселенной, позволила идею эволюции в биологии перенести на объекты физического мира, устранив тем самым противоречие между классической физикой и эволюционной теорией в биологии. Основные принципы синергетики как науки о взаимодействии и самоорганизации сложных систем  позволяют объяснить возникновение порядка из беспорядка, понять закономерность как результат взаимодействия множества случайностей и тем самым проливают свет на многие процессы, происходящие в  сложных по своей природе живых и социальных системах и процессах.

 

2. Принципы системности и синергии позволили по-новому взглянуть на процессы взаимодействия окружающей среды и жизнедеятельности живых организмов. Если в парадигме классической биологической эволюции акцент делался на влияние окружающей среды на все живое, то в новой, системно-синергетической, внимание ученых привлек обратный процесс – влияния и воздействия живых организмов на физические, химические и геологические факторы внешней среды. Многочисленные наблюдения и исследования ученых привели к открытию обратной связи между живой и неживой природой, в результате которой живое вещество меняет в значительной степени лик природы. Как это происходит? Каким образом живое вещество влияет на физико-химические и геологические процессы?


 

В исследование этих проблем значительный вклад внесли представители русского космизма – В.И. Вернадский, Н.А. Умов, Н.Г. Холодный, К.Э. Циолковский, А.Л. Чижевский.

 

Как человеческая деятельность влияет на процессы в биосфере, как она способствует ее эволюции?

 

Исторически переход от биосферы к ноосфере начал осуществляться еще в те времена, когда человечество освоило земледелие и скотоводство. Это привело к расширению посевных площадей, изобретению орудий земледелия и возделывания с их помощью земель. Изобретение орудий  производства и охоты, приручение диких животных, создание новых культурных растений привели к тому, что человек научился изменять окружающий его мир, создавать новую живую природу. Человек сумел новым путем, отличающимся от животных, победить голод, обеспечив тем самым возможность неограниченного размножения.

 

Таким образом, человечество как часть биосферы своей разумной деятельностью оказывало всевозрастающее влияние на происходящие в биосфере процессы. На сегодняшний день в связи с огромными техногенными нагрузками на биосферу остро встает вопрос о сохранении окружающей среды, природы от воздействия на нее человека.

 


Заключение

Итак, наука во многом оказывает влияние на самого человека. Она даёт человеку картину мира, постоянно дополняя и уточняя её детали, поэтому эта картина постоянно меняется на протяжении времени. Развитие современной науки – процесс неоднозначный, сложный, во многом противоречивый, но в то же время поступательный, способствующий решению многих назревших в обществе проблем. Так, в ходе исследования темы была достигнута основная цель работы: проведено теоретическое исследование развития современной науки. А также были выполнены все поставленные задачи. В работе рассмотрена роль науки в обществе, её характеристика и принципы, а также выявлены главные цели и функции; были исследованы основные тенденции развития современной науки и охарактеризованы их положительные и отрицательные стороны. Современная наука накопила массу информации об окружающем нас мире и о мире внутри нас. Эта информация обрабатывается и накапливается с помощью современных информационных технологий и сложной техники. Данные науки сегодня активно используются не только для организации производства, но и при разработке прогнозов развития общества. Таким образом, тенденции развития современной науки связаны в основном быстрым развитием мира, общество становится всё более информационализованным, появляются новые технологии и открытия. Наука при этом не отстаёт, а лишь набирает обороты и развивается с не меньшей скоростью. Опираясь на мнение учёных можно утверждать, что развитие цивилизации в третьем тысячелетии предопределяется состоянием и уровнем использования инноваций. Чем более развита страна, тем больше внимания она уделяет науке, направляя научные знания на улучшение жизни людей и технологический прогресс.