Файл: пособие химия ВАЖНАЯ МЕТОДИЧКА.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 04.09.2021

Просмотров: 993

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Например: названия комплексных катионов

[Со Н2О (NH3)5] Cl3 - хлорид пентаамминаквакобальта (III)

[Pt (NH3)5 Cl] Cl3 - хлорид хлоропентаамминплатины (IV)

[Pt H2O (NH3)2 OH] NO3 - нитрат гидроксодиамминакваплатины (II)

[Cu (H2O)4] SO4 - сульфат тетрааквамеди (II)

  1. Если в соединение входит комплексный анион, то сначала называют лиганды по указанному выше порядку. Далее называют комплексообразователь, используя корень его латинского названия с добавлением слога – «ат», после чего в скобках римскими цифрами указывают степень окисления комплексообразователя. В последнюю очередь называется катион внешней сферы в родительном падеже. Например:

K [Ag (CN)2] - дицианоаргентат (I) калия

K2 [Cu Cl4] - тетрахлорокупрат (II) калия

K3 [Fe (CN)6] - гексацианоферрат (III) калия

K2 [Pt Cl2 (NO2)2] - динитродихлороплатинат (IV) калия

Наименование нейтральных комплексов составляются из названия лигандов и русского названия комплексообразователя в именительном падеже. При этом валентность комплексообразователя не указывается. Например: [CO (NH3)3 Cl3] - трихлоротриамминкобальт.

[Pt (NH3)2 Cl4] - тетрахлородиамминплатина.

Внутренняя и внешняя сфера в молекулах комплексных соединений связана ионной связью. Комплексообразователь и лиганды связаны ковалентной связью по донорно-акцепторному механизму: лиганды играют роль донора электронной пары, а комплексообразователь - роль акцептора, на свободной орбитали которого располагается электронная пара лиганда.

Диссоциация комплексных соединений идет в две ступени. Первичная диссоциация комплексных соединений идет по типу ионизации сильных электролитов и протекает нацело: [Ag (NH3)2] Cl → [Ag (NH3)2]+ + Cl-

Лиганды с комплексообразователем связаны более прочной связью и диссоциация комплексного иона протекает в меньшей степени. Этот вид диссоциации называется вторичной.

[Ag (NH3)2]+ Ag+ + 2NH3

Мерой устойчивости комплексного иона служит его константа нестойкости и обозначается Кн.


Чем меньше константа нестойкости, тем устойчивее комплекс.

Комплексные соединения играют огромную роль в процессах жизнедеятельности растений и животных. В организме животных и растений комплексные соединения выполняют самые разнообразные функции: накопление и перемещение различных веществ и энергии; образование и расщепление химических связей; участие в процессах дыхания, фотосинтеза, биологического окисления и ферментативном катализе. Такие важнейшие в биологическом отношении вещества, как гемоглобин, хлорофилл, цианкоболамин, являются внутрикомплексными, хелатными соединениями. В них четыре координационных места занимает одна частица, называемая порфином, а комплексообразователем в гемоглобине является - Fe+2, а в хлорофилле - Mg2, в витамине B12 - Cо+3.


Комплекс железа с порфирином имеет плоское строение, в котором ион железа соединен 4 координационными связями с 4 пиррольными кольцами, 5 связь идет на присоединение белка глобина, но шестое место в координационной сфере свободно. Это место и занимает молекула кислорода, переносимого гемоглобином в процессе дыхания.


В последнее время установлено, что комплексные соединения платины и палладия оказывают тормозящее действие на развитие злокачественных опухолей и с успехом могут применяться для терапевтических целей, образование хелатных (внутрикомплексных) соединений, используются при растворении солей в почечных камнях и снижении жесткости воды, обусловленной присутствием ионов кальция и магния. Известна высокая бактерицидная активность некоторых комплексных соединений серебра. Трилон Б (ЭДТА) способен образовывать комплексы со многими металлами, в том числе с Са+2. Это дает возможность применять его при заболеваниях, сопровождающихся избыточным отложением солей кальция в организме.


Биогенные элементы


Изучение распространенности отдельных элементов и их изотопов позволяет отметить следующие закономерности.

  1. Элементы с чётными порядковыми номерами характеризуются повышенной распространенностью. На Земле содержание чётных элементов составляет 97,21 % от массы всех элементов.

  2. Наиболее распространены элементы, изотопы которых имеют массовое число, кратное 4. Примерами таких элементов могут служить He, O, Ne, Si, S, Ar, Fe, Ni и др.

На Земле непрерывно происходят ядерные процессы, ведущие, в конечном счёте, к изменению их изотопного состава. Однако, все эти процессы идут медленно. Результаты анализа вещества земной коры показывают, что изотопный состав элементов на Земле практически постоянен. Первые исследования о взаимосвязи земной коры и химического состава живых организмов сделаны русским учёным В.И Вернадским. Он, считал, что земная кора и живые организмы составляют единую систему. Единство живого и неживого заключается, прежде всего, в общности их элементарного состава. Вещества живой и неживой природы состоят из одних и тех же химических элементов, связанных ковалентной, ионной, водородной связями.

В результате длительного непрерывного воздействия на организм определённого по химическому составу потока атомов происходит подбор и распределение организмов по разным зонам Земли, а наряду с этим наступает и изменчивость организмов. Так, например, недостаточность йода в гористых местностях и по долинам рек, вызывает увеличение щитовидной железы и зоб у животных и человека. С ростом цивилизации в организм человека поступает всё больше биологически активных ненужных веществ, таких как: ртуть (из зубных пломб), свинец, сурьма, мышьяк (из газет), ионы металлов (из кухонной посуды).

Исследования учёных США указали на недостаток хрома в тканях организма жителей, в сравнении с обитателями Африки и Азии. Это вызвано излишком рафинированного сахара и других очищенных продуктов в рационе человека. Недостаток хрома объясняет рост числа сердечных заболеваний.

Элементы, играющие важную роль в физиологических и патологических процессах, в организме человека называются биогенными элементами. Из них 16 элементов особо важны. Их называют "элементы жизни": это10 металлов: Na, K, Mg, Ca, Zn, Cu, Co, Mn, Fe, Mo; 6 неметаллов (органогены): H, O, N, C, P, S.


По количественному содержанию биогенных элементов в организме человека они подразделяются на 3 группы: 1) Макробиоэлементы

2) Микробиоэлементы

3)Ультрабиомикроэлементы

М АКРОБИОЭЛЕМЕНТЫ

10-3 - 10-2 % и более

Na, K, Mg, Ca

H, C, O, N, P, S, Cl


МИКРОБИОЭЛЕМЕНТЫ

10-3 - 10-5 %

Rb, Sr, Ba, Al, Sn, Ti, V,

Cr, Mn, Fe, Cu, Zn, Co


B, Si, As, F, Br, I


УЛЬТРАМИКРОБИОЭЛЕМЕНТЫ

менее 10-5

Li, Be, Pb, Mo, W, Cd, Ni, Ag

Se


В зависимости от строения (электронной конфигурации) атома, биогенные элементы подразделяются на s, p, d -биоэлементы.

s-элементы ns2: H, Na, Mg, Ca, Sr, Ba (6)

p-элементы ns2np1-6: Al, C, Si, Sn, Pb, N, P, O, S, Se, F, Cl, I, Br, B (15)

d-элементы (n-1)d1-10ns2:Cu, Zn, Cr , Mn, Fe, Co, Ni (7)


Окислительно-восстановительные процессы


Окислительно-восстановительные процессы (ОВП) играют важную роль в жизнедеятельности организма, поскольку именно в процессах окисления происходит выделение и запас энергии, а восстановительные процессы связаны с биосинтезом белков, нуклеиновых кислот, полисахаридов в организме. Окислительно-восстановительные реакции – это реакции, идущие с переносом электронов и изменением степени окисления элементов.

ОВП состоят из двух одновременно протекающих и противоположно направленных процессов - окисления и восстановления. Окисление – это процесс отдачи электронов, в ходе которого происходит увеличение степени окисления элементов. Восстановление - это процесс присоединения электронов, в ходе которого происходит уменьшение степени окисления элементов. Окислитель – это вещество, атом которого принимает электроны, тем самым уменьшая степень окисления. Восстановитель – это вещество, атом которого отдает электроны, тем самым увеличивая степень окисления. ОВП подразделяются на три типа.

1. Межмолекулярные, в которых окислитель и восстановитель находятся в разных молекулах, например:


2KMn+7O4 + 5KN+3O2 + 3H2SO4 = 2Mn+2SO4 + 5KN+5O3 + K2SO4 + 3H2O

окислитель - Mn+7, восстановитель - N+3.


2. Внутримолекулярные, в которых окислитель и восстановитель находятся в одной молекуле, но являются разными элементами, например:

2KCl+5O3-2 = 2KCl-1 + 3O40

окислитель - Cl+5, восстановитель - O-2.


3. Диспропорционирования (самоокисления - самовосстановления), в которых окислителем является один и тот же элемент в одной и той же степени окисления, например:

3Cl20 + 6KOH = 5КСl-1 + KCl+5O3 + 3H2O

окислитель - Cl0, восстановитель - Cl0.


В ходе окислительно-восстановительных процессов между частями системы происходит перераспределение зарядов. Возникающая разность зарядов между частями системы носит название потенциал. Существует несколько видов потенциалов, связанных с прохождением различных процессов.

Одним из них является электродный потенциал, который возникает в том случае, когда пластинку металла погружают в раствор его соли (например, пластинку цинка в раствор сульфата цинка). При этом возможно прохождение двух процессов, которые определяются активностью металла и концентраций его катиона в растворе (рис.1).


Ме Ме



+ _ + _ _

М еn+ + _ + Меn+ _ + _

+ _ + _ + _

+ + + _ + _

рис. 1 Виды электродных процессов


Первый процесс происходит в том случае, когда активность металла высока, а концентрация его катиона невелика. В этом случае (см. рис. 1) ионы металла, находящиеся в узлах кристаллической решетки металла, вследствие гидратации будут переходить в раствор, заряжая его положительно; электроны, входящие в состав «электронного газа» (особенности металлической связи) остаются на куске металла, придавая ему отрицательный заряд. В случае низкой активности металла и высокой концентрации его катиона процесс может идти в другом направлении (см. рис. 2). Катионы металла могут перейти на пластинку, достраивая кристаллическую решетку металла и придавая ей положительный заряд; анионы соли остаются в растворе, заряжая его отрицательно. В обоих процессах между пластинкой металла и раствором его соли возникает разность зарядов, называемая электродным потенциалом Е. Независимо от механизма возникновения электродного потенциала, он определяется окислительно-восстановительным процессом, а его величина - уравнением Нернста:

M e Men+ + ne-

Z n Zn2+ + 2e-


где: Е - потенциал системы,

Е0 - стандартный потенциал системы, т.е. потенциал, определенный в стандартных условиях (Т=292 К, р=1 атм, [Red] = [Ох] = 1 моль/л)

Т - абсолютная температура,

n - число электронов, участвующих в процессе,

R = 8,31 Дж/моль * К,

F = 96500 Кл/моль

[Меп+]- равновесная концентрация соли данного металла.

Подставляя постоянные при 25 0С, получим:


По величине стандартного электродного потенциала все металлы выстраиваются в электрохимический ряд напряжений.

Одним из основных является окислительно-восстановительный потенциал. Его возникновение связано с обратимостью окислительно-восстановительных процессов. Одно и то же вещество в зависимости от условий может находиться либо в окисленной (Oх), либо восстановленной (Red) форме. Между этими двумя формами идут процессы взаимного перехода, сопровождающиеся изменением заряда системы. Процесс взаимного перехода идет до тех пор, пока между двумя формами не установится равновесие:

Red Ox + ne

_

Fe2+ Fe3+ + e


После установления равновесия в системе возникает избыточный заряд, называемый окислительно-восстановительным или редокс-потенциалом. Его величина определяется уравнением Нернста:


где: Е - потенциал системы,

Е0 - стандартный потенциал системы, т.е. потенциал, определенный в стандартных условиях (Т=292 К, р=1 атм, [Red] = [Ох] = 1 моль/л)

[Red], [Ох] - равновесные концентрации восстановленной и окисленной форм.


Любой окислительно-восстановительный процесс можно представить как взаимодействие двух редокс-систем - системы окислителя и системы восстановителя. Направление ОВП будет определяться величинами редокспотенциалов систем. При этом можно выделить следующие закономерности:

1. одна и та же редокс-система может являться как окислителем, так и восстановителем - это зависит от соотношения величин потенциалов;

2. системы с более отрицательным потенциалом будут восстанавливать системы с более положительным потенциалом;

3. после прохождения ОВП потенциалы редокс-систем выравниваются.

Возникновение разности зарядов между частями системы может быть и не связано с прохождением ОВП. Так, в ходе процесса диффузии между частями раствора, вследствие различной подвижности ионов, возникает разность зарядов, называемая диффузным потенциалом. Диффузный потенциал существует недолго и исчезает по окончании процесса диффузии.

Если два раствора разделить полупроницаемой мембраной, то на сторонах мембраны возникает разность зарядов, называемая мембранным потенциалом. Возникновение мембранного потенциала связано с тем, что вследствие различного размера ионов они могут проходить или не проходить через мембрану.

В живых организмах, вследствие наличия многочисленных мембран, направленного транспорта веществ и прохождения различных ОВП между его частями, возникает разность зарядов, называемая биопотенциалами. По своей природе биопотенциалы могут быть диффузными, мембранными и редокспотенциалами. Биопотенциалы играют важнейшую роль в направленном транспорте веществ, работе мембранных систем, процессах биосинтеза, выделение и запасание энергии. Выделение и запасание организмом энергии тесно связано с процессами окисления и восстановления.


Высокомолекулярные вещества (ВМС)


8.1.Общие понятия, классификация высокомолекулярных соединений


Высокомолекулярными соединениями (ВМС) называются такие вещества, молекулы которых состоят из сотен и тысяч многократно повторяющихся групп атомов. Одинаковые, многократно повторяющиеся группы атомов называются элементарным звеном. Исходное низкомолекулярное вещество, из которого синтезирован полимер, называется мономером. Название ВМС эти соединения получили благодаря большой относительной массе, например, молярная масса натурального каучука, являющегося ВМС, находится в пределах от 7•104  до 2,5•106 . Молекулы ВМС из-за их большой молярной массы называются обычно макромолекулами.

По происхождению ВМС подразделяются на биогенные и синтетические. Биогенные ВМС получаются биохимическим синтезом в результате жизнедеятельности организмов (белки, нуклеиновые кислоты и др.). Синтетические ВМС получают из исходных низкомолекулярных веществ в результате реакции полимеризации и поликонденсации.