Файл: 1. 1 Характеристика существующих устройств автоматики и телемеханики на разрабатываемом участке.rtf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 08.11.2023

Просмотров: 142

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
, а также от помех, создаваемых токами централизованного электроснабжения вагонов пассажирских поездов.[23]

В принятой структуре построения для БРЦ одного пути достаточно применять сигналы двух несущих частот, например 420 и 480 Гц. Состояние БРЦ 1 и 2 контролирует приемники 1П1 и 2П1, принимающие сигналы на несущей частоте 420 Гц и частоте модуляции 8 Гц от генератора 1/2 Г1. Первая цифра в условном наименовании приемника обозначает номер БРЦ, а вторая – тип приемника; П1 воспринимает сигналы с несущей частотой 420 Гц, а П2 – 480 Гц. Состоянием БРЦ 3 и 4 контролирует приемники 3П2 и 4П2, воспринимающие сигналы от генератора 3/4 Г2. В принятой структуре на приемник 2П1 БРЦ 2 мог бы оказать влияние сигнальный ток БРЦ 5, работающий от генератора того же типа Г. Однако приемник 2П1 защищен от опасного влияния генератора 5/6 Г1 из за естественного затухания при прохождении сигнала от генератора 5/6 Г1 к приемнику 2П1 через БРЦ 5, 4 и 3. Аналогично взаимно защищены и другие приемники от генератора, работающих на одинаковых несущих частотах. При всех вариантах приемник данной БРЦ и влияющий генератор, работающий на той несущей частоте, разделены тремя БРЦ. Расчеты показывают, что затухание сигнала при прохождении его через 3 БРЦ составляет примерно 20 дБ. Затухание сигнала от влияющего источника при прохождении его 3 БРЦ составляет примерно 60 дБ. По этому помеха от источника расположенного за три БРЦ от данного приемника, примерно в 100 раз ниже полезного сигнала, поступающий на вход приемника от генератора собственной БРЦ. При не благоприятном соотношении длин БРЦ (длины БРЦ, через которые проходят от влияющего источника, существенно ниже предельных значений) взаимное влияние сигналов от БРЦ, работающих на одинаковых частотах возрастает. В этом случае для исключения взаимного влияния может быть использованы третья несущая частота, например 580 Гц, в дополнении к указанным частотам 420 и 480 Гц.[10]

Занятие и освобождение БРЦ фиксируется не в момент вступления и проследования поездом точек подключения аппаратуры, а на некотором расстоянии от концов БРЦ, характеризующих зоны дополнительного шунтирования lш по приближении и удалении поезда. Наличие этих зон обусловлено отсутствием изолирующих. Например, при приближении поезда к БРЦ 2 за счет поездного шунта напряжение на питающем конце, а значит, и на входе приемника 2П1 снижается. На некотором расстоянии благодаря шунтированию через рельсовую петлю поездным шунтом напряжение на входе приемника снижается до значения
, соответствующего отпусканию якоря путевого реле. Так же и срабатывание путевого приемника и возбуждения путевого реле, например 4П2, происходят после удаления поезда на расстояние lш от БРЦ 4. Таким образом тактическая длина БРЦ оказывается больше ее физической длины, определяемой точками подключения аппаратуры, то есть
lфакт = l + 2lш. (3.1)
Для нормальных действия локомотивных устройств АЛС следует обеспечивать нормативный ток локомотивной сигнализации на расстоянии lАЛС равном суммарной длине рельсовой цепи l и зоны дополнительного шунтирования lш, то есть должно выполнятся условия lАЛС = l + lш.

Длина зоны шунтирования зависит от частоты сигнального тока, рабочее напряжение сигнала на входе приемника, сопротивление балласта рельсовой линий, коэффициента возврата путевого приемника, реального сопротивления поездного шунта длины БРЦ. Для железных дорог при частоте сигнального тока 4258 Гц значение зоны шунтирования в условиях эксплуатаций находится в пределах от 40 до 120 м. При повышении частоты сигнального тока, напряжение на входе приемника, сопротивления балласта и сопротивления рельсов длина зоны шунтирования уменьшается, а при уменьшении указанных параметров значение lш возрастает.

В практических условиях эксплуатации на железных дорогах изменение зоны lш в основном обусловлено изменением сопротивлениям балласта, а на линиях метрополитенов – колебанием напряжения источника питания.

Если по каким – либо причинам необходимо получить наименьшую зону lш , то это может быть достигнуто повышением напряжения сигнала на входе приемника до максимально допустимого значения, при котором обеспечиваются все режимы работы БРЦ. [9]

Для исключения ложного срабатывания путевых приемников при случайном объединении рельсовых нитей соседних путей на двухпутных участках железных дорог используют сигналы с четырьмя отличительными признаками. Эти признаки создаются в результате модуляции двух несущих частот 425 и 475 Гц частотами 8 и 12 Гц. Сигналы 425/8 и 475/12 применяют в БРЦ одного пути, а сигналы 425/12 и 475/8 – для БРЦ другого пути двухпутного участка. В числителе указана несущая частота, а в знаменателе – частота модуляции.

В структурной схеме устройств ЦАБ для примерного перегона содержащего 12 БРЦ, демонстрационный лист 2, на каждой станции размещается аппаратура

, относящаяся к половине перегона, примыкающей к данной станции. Питание БРЦ осуществляется от генераторов Г1и Г2 сигналов 425/8 и 475/12 соответственно. Каждый генератор питает две смежные БРЦ, расположенные по обе стороны от точки его подключения к рельсовой линии. Генераторы для БРЦ 1-4 расположены на станции Доссор, а для БРЦ 5-10 – на станции Макат. Состояние БРЦ контролируют путевые приёмники П1 и П2, первый из которых воспринимает сигналы 420/8, а второй – 480/12. основную аппаратуру размещают на станциях. Непосредственно у пути размещают лишь пассивные согласующие путевые трансформаторы ПТ, а на линиях с электротягой в необходимых случаях – и дроссель-трансформаторы.

Аппаратура соединяется с путевыми трансформаторами симметричным сигнальным кабелем с парной скруткой жил. Питание двух смежных БРЦ производится по одной паре жил сигнального кабеля. Два приёмника смежных БРЦ также подключают одной парой жил. По ним же передаются кодовые сигналы АЛС от передающих устройств, расположенных на станциях. Приведённая структура построения БРЦ позволяет наиболее рационально использовать передающую аппаратуру БРЦ и сигнальный кабель. При таком же числе рельсовых цепей с изолирующими стыками потребовалось бы в 2 раза больше генераторов и сигнального кабеля.[3]

Контроль перегона, смена направления движения и увязка между станциями обеспечивают по отдельным цепям этого же сигнального кабеля (ССН и У). Кодовые сигналы АЛС передаются в БРЦ с момента занятия её поездом. Кодовые сигналы передаются с питающего или приёмного конца в зависимости от установленного направления движения.
3.2 Разработка принципиальных схем

Устройства централизованной автоблокировки содержат передающую и приёмную аппаратуру, и передающую аппаратуру числовой и частотной систем АЛС. В устройствах АБТЦ применяется следующая аппаратура: путевой генератор с путевым модулятором ПРМ, путевой трансформатор ЛТЦ, фильтр питающего конца ФП8,9, путевой приёмник УПКЦ, путевой генератор ПГ-АЛС, путевой фильтр ФП-АЛС. Последние два блока применяют для передачи сигналов частотной АЛС.

Генератор ГРЦ обеспечивает формирование амплитудно-модулированных сигналов БРЦ. Генератор выполнен на плате реле НШ выпрямитель генератора содержит диодный мост VД1, со сглаживающим фильтром, состоящим из стабилитрона VД2, конденсатора С7 и резистора R3. Генератор несущей частоты выполнен на кремниевом транзисторе VТ1. Режим работы транзистора устанавливается посредством делителя, выполненного на резисторах R1 и R2.В эммитер транзистора, включена обмотка 3-2 трансформатора Т. Положительная обратная связь, обеспечивается посредством обмотки 3-6, включённую в базовую цепь транзистора. Кабельный контур образует индуктивность трансформатора Т, выполненного на броневом ферритовом сердечнике, и ёмкость одного из конденсаторов С1-С5.Конденсаторы подключаются внешними перемычками к обмотке 1-6 трансформатора Т. Для подстройки, но только на одну из частот, может использоваться подстрочный сердечник трансформатора. С помощью конденсатора генератор настраивают на различные частоты. Перемычку между выводами на плате П устанавливают при настройке генератора, а перемычку между выводом 12 и одним из выводов 23,21,22,13 внешнего разъёма устанавливают в релейном шкафу или на стативе с аппаратурой в зависимости от принятой для данной БРЦ несущей частоты. При перемычке 12-23 генерируется частота 420Гц, а при перемычке 12-21 – 480Гц. Перемычками 12-22, 12-13, 12-11 генератор настраивают соответственно на частоты 580, 720 и 780Гц.


Для образования модулирующих частот применён мультивибратор, выполненный на транзисторах VТ2 и VТ6.Частота образуемых мультивибратором колебаний определяется время задающими цепями С8, R13-R-16 и С9, R5-R8 и составляет 8Гц. При установке внешних перемычек 41-33-42 из время задающих цепей исключаются резисторы R7, R8, R15 и R16, мультивибратор начинает генерировать сигнал частотой 12Гц.[5]

Сигналы мультивибратора усиливаются транзистором VТ4. На вход этого транзистора поступает сигнал с резистора R9, включённого в цепь эмиттера транзистора VТ2. При его открытии через резистор R9 протекает коллекторный ток, создавая на нём падение напряжения. Этим напряжением открывается транзистор VТ4, так как к его базе прикладывается отрицательный по отношению к эмиттеру потенциал. При закрытом транзисторе VТ2 усилительный транзистор VТ4 также закрыт.

Усиленный сигнал с коллектора транзистора VТ4 поступает на вход ключевой схемы, выполненной на транзисторах VТ3 и VТ5. При закрытом транзисторе VТ4 с его коллектора отрицательный потенциал поступает на базы транзисторов VТ3 и VТ5 ключевой схемы. Последние в этом случае открыты и приводят обе полуволны переменного тока несущей частоты, подаваемого через ключевую схему в нагрузку, подключаемую к выводам 3-31 блока. Для каждой полуволны переменного тока один транзистор включён в прямом направлении, а другой – в инвертном, образуя с компенсированный ключ. В результате условия прохождения каждой полуволны переменного тока через ключ идентичны, что практически исключает искажение сигнала.

Напряжение питания генератора по переменному току равно 17,5В, выпрямленное напряжение равное определяется напряжением стабилизации стабилитрона VД2. Потребляемая мощность не больше 8В∙А. Выходное напряжение несущей частоты имеет практически синусоидальную форму кривой и составляет на нагрузке сопротивлением 470Ом, подключённой к выводам 3 и 4 блока, не менее 5В.[5]

Для получения на выходе генератора амплитудно-модулированного сигнала устанавливают перемычку между выводами 4 и 32. Отклонение несущей частоты от номинального значение не превышает
0,5% при крайних значениях температуры окружающей среды и напряжения источниками питания.

Путевой усилитель ПУ1 применяют для усиления сигналов, предназначенных для работы БРЦ и сигналов частотной АЛС. Блок ПУ1 содержит два двухтактных каскада усиления. Первый каскад выполнен на транзисторах VТ1 и VТ2 средней мощности; второй каскад выполнен на мощных транзисторах VТ3 и VТ4. На входе усилителя установлении трансформатор Т1 и для согласования его входного сопротивления с выходным сопротивлением источника усиливаемого сигнала-генератора ГРЦ или ПГ-АЛСМ.

Включённый на входе усилителя резистор R1 стабилизирует его входное сопротивление. Включение этого резистора и конденсаторов С5 и С6 в базовые цепи транзисторов VТ1 и VТ2 исключает возможность самовозбуждения усилителя на повышенных частотах при разомкнутом входе усилителя. Межкаскадная связь выполнена посредством трансформатора Т2 выходной каскад нагружен на трансформатор ПТЦ. Для повышения коэффициента полезного действия и облегчения работы транзисторов оба каскада работают в ключевом режиме.

В режиме холостого хода транзисторы VТ3 и VТ4 находятся в режиме глубокого насыщения, их входное сопротивление резко снижается, поэтому значительно возрастает ток через обмотки трансформатора Т2 и через транзисторы VТ1 и VТ2. Для уменьшения этого тока в эту цепь может быть включён балластный резистор.[4]

Транзисторы выходного каскада защищены от импульсных воздействий тягового тока и атмосферных перенапряжений включённым на выходе усилителя защитным контуром (демпфером), состоящим из диодов VД5- VД8 конденсатора С4 и резистора R2, защитный контур снижает пиковые напряжения.

Внутри блока имеется мощный выпрямитель на кремневых диодах VД1- VД4 и сглаживающий фильтр, состоящий из дросселя L и электрических конденсаторов С1-С3. От выпрямителя осуществляется питание цепей транзисторов. Переменный ток напряжением 17,5В подаётся в блок от сигнального трансформатора СОБС-2Л или ПОБС-5А.

Требуемое для питания БРЦ напряжение выбирается на выводах этого трансформатора. При входном напряжении 5Ви напряжений питания 17,5В входное сопротивление блока ПУ1 составляет примерно 400м. Выходная мощность 40ВТ при выходном напряжении 5В.

Путевой приёмник сигналов ПРЦ или ПРЦМ предназначен для приёма и дешифрирования амплитудно-модулированных сигналов из рельсовой цепи. Приёмник ПРЦ предназначен для применения на железнодорожных линиях, а ПРЦМ – на линиях метрополитена.[5]