Файл: Рис. 13 Последовательность устройства опускного колодца.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 09.11.2023

Просмотров: 152

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


При слоистом напластовании расчетную силу трения определя­ют как средневзвешенную в пределах глубины погружения колодца:

T =  ti hiu (13.2)

где ti — средняя удельная сила трения, кПа, в пределах слоя грунта мощностью hi , м; и — периметр колодца.

При расчете колодца, погружаемого в тиксотропной рубашке, сила трения учитывается только на участке от низа колодца до начала тиксотропной рубашки. Трение по боковой поверхности колодца в зоне тиксотропной рубашки вследствие его малости в расчет не принимается.

Когда прорезаемая колодцем толща основания у поверхности сложена более плотными грунтами, чем нижележащие, появляется опасность заклинивания верхней части колодца и его зависания. В результате в стенах колодца возникают растягивающие напряже­ния N, которые могут привести к отрыву его нижней части.

Расчет опускных колодцев на разрыв выполняется, как правило, при глубине опускания Н> 15 м. Если высота верхнего, более плотного, слоя при этом меньше половины глубины погружения, расчетная нормальная сила N может быть определена из условия

N = pl T(13.3)

где Ti — расчетная сила трения стен колодца по прочному грунту, кН.

При высоте более плотного верхнего слоя более половины про­ектной глубины догружения

N=G –Ti (13.4)

Для обеспечения прочности колодца на возможный разрыв вер­тикальное армирование стен проектируется исходя из определенной таким образом силы N.

Расчет на всплытие. При погружении колодца в водонасыщенные грунты после устройства днища на его подошву будет действовать гидростатическое давление воды, направленное снизу вверх. От всплытия колодец будут удерживать его вес и силы трения по наружной поверхности. Колодец не всплывет, если будет выпол­няться условие

(G + 0,5T)/(Aw Hwem (13.5)

где G — суммарный вес оболочки колодца и днища, кН, определя­емый с коэффициентом надежности по нагрузке 0,9; Т — сила тре­ния по наружной поверхности колодца, кН; 
Aw — площадь колодца по внешнему периметру ножа, м2Hw — расстояние от уровня подземных вод до низа ножа, м; em = 1,2 — коэффициент надежности на всплытие.

При проверке колодца на всплытие в эксплуатационном режиме величина G включает также и другие постоянно действующие на­грузки (внутреннее обустройство колодца, нагрузки от вышерасположенных конструкций и т. п.).

Если условие (13.5) не выполняется, то необходимо предусмот­реть устройство анкерных креплений или увеличить вес колодца.

При расчете на всплытие колодцев в тиксотропной рубашке учитывается последовательность ведения работ. Если колодец осу­шается до замены глинистого раствора цементно-песчаным, то в расчет принимается только сила трения на участке от низа колод­ца до тиксотропной рубашки. Если колодец осушается после заме­ны рубашки цементно-песчаным раствором, то сила трения учиты­вается и на остальной боковой поверхности колодца и принимается равной 20 кПа.

Расчет на прочность и устойчивость отдельных элементов конст­рукции колодца производят по действующим нормативным до­кументам с учетом всех реально возможных условий его эксплу­атации.

Расчет колодцев на сдвиг по подошве и опрокидывание, а также проверку их общей устойчивости вместе с основанием осущест­вляют только в случае больших горизонтальных нагрузок или расположения колодцев на косогоре в соответствии с изложенным в гл. 6.

13.2. Кессоны


Кессонный метод устройства фундаментов глубокого заложения был предложен во Франции в середине XIX в. для строительства в сильно обводненных грунтах, содержащих прослойки скальных пород или твердые включения (валуны, погребенную древесину и т. д.). В этих условиях погружение опускных колодцев по схеме «насухо» требует больших затрат на водоотлив, а разработка грун­та под водой невозможна из-за наличия в грунте твердых включе­ний.

Кессон схематически представляет собой опрокинутый вверх днищем ящик, образующий рабочую камеру, в которую под давлением нагнетается сжатый воздух, уравновешивающий давление грунтовой воды на данной глубине, что не по­зволяет ей проникать в ра­бочую камеру, благодаря че­му разработка грунта ведет­ся насухо без водоотлива.

По сравнению с опуск­ными колодцами кессонный способ устройства фунда­ментов и подземных соору­жений является более доро­гостоящим и сложным, по­скольку требует специаль­ного оборудования (комп­рессоры, шлюзовые аппара­ты, шахтные трубы и т. д.). Кроме того, этот способ связан с пребы­ванием людей в зоне повышенного давления воздуха, уравновеши­вающего гидростатический напор воды, что приводит к снижению производительности труда, значительно сокращает продолжитель­ность рабочих смен (до 2 ч при избыточном давлении 350...400 кПа) и ограничивает глубину погружения кессонов до 35...40 м ниже уровня подземных вод, поскольку максимальное добавочное давле­ние, которое может выдержать человек, составляет 400 кПа.

В связи с вышесказанным кессоны применяют значительно реже других типов фундаментов глубокого заложения.

Конструкция кессонов и оборудование для их опускания. Кессон состоит из двух основных частей: кессонной камеры и надкессонного строения (рис. 13.9).



Рис. 13.9. Схема устройства кессона:

а — для заглубленного помещения; б — для глу­бокого фундамента; 1 — кессонная камера; 2 — гидроизоляция, 3 — надкессонное строение; 4 — шлюзовой аппарат; 5 — шахтная труба

Кессонная камера, высота которой по санитарным нормам при­нимается не менее 2,2 м, выполняется из железобетона и состоит из потолка и стен, называемых 
консолями. Консоли камеры с внутрен­ней стороны имеют наклон и заканчиваются ножом. Толщина консолей в месте примыкания к потолку составляет 1,5...2 м, шири­на банкетки принимается равной 25 см. Конструкция ножа кессона такая же, как и опускного колодца.

Для изготовления кессонных камер применяют бетон класса не менее В35, а их армирование ведется на усилия, возникающие в процессе возведения кессона. При бетонировании кессонной каме­ры в ее потолке оставляют отверстия для установки шахтной тру­бы, труб сжатого воздуха и воды, а также подводки электроэнергии. Надкессонное строение в зависимости от назначения кессона выполняется либо как колодец с железобетонными стенками (под заглубленные помещения), либо в виде сплошного массива из моно­литного бетона или железобетона (для фундаментов глубокого заложения). Если надкессонное строение выполняется под заглубленное помещение, то на его наружные стены наносится гидроизо­ляция для защиты кессона от проникновения в него воды.

Как и в случае опускных колодцев, надкессонное строение воз­водят или сразу на всю проектную высоту, или же ярусами по мере погружения.

Главными элементами оборудования для опускания кессонов являются шлюзовые аппараты, шахтные трубы и компрессорная станция.

Шлюзовой аппарат, соединенный с кессонной камерой шахт­ными трубами, предназначен для шлюзования людей и грузов при их спуске в кессонную камеру и при подъеме из нее. Процесс шлюзования и вышлюзовывания рабочих происходит следующим образом. Рабочий входит в пассажирский прикамерок шлюза, где давление постепенно повышается от атмосферного до имеющегося в рабочей камере. На этот процесс затрачивается, как правило, от 5 до 15 мин, что необходимо для адаптации организма человека к условиям повышенного давления, после чего по шахтной трубе рабочий опускается в рабочую камеру кессона. Выход из рабочей камеры кессона осуществляется в обратной последовательности, но при этом на снижение давления воздуха в пассажирском прикамерке шлюза до уровня атмосферного требуется в 3...3,5 раза больше времени, чем на переход от атмосферного давления к повышенному. Здесь необходимо проявлять особую осторожность
, поскольку бы­стрый переход от повышенного давления к атмосферному может быть причиной так называемой кессонной болезни.

Для обеспечения нормальных условий работы рабочая камера и шлюзовой аппарат обеспечиваются электроосвещением, телефон­ной связью, системой звуковых и световых сигналов.

Производство кессонных работ. Последовательность производст­ва работ при строительстве кессонов такая же, как и при строитель­стве опускных колодцев.

Сначала на спланированной поверхности грунта или на дне пионерного котлована возводится кессонная камера, на которой монтируются шлюзовой аппарат и шахтные трубы. Одновременно вблизи кессона сооружается компрессорная станция и монтируется оборудование для подачи в кессон сжатого воздуха.

После того как бетон кессонной камеры приобретет проектную прочность, ее снимают с подкладок и начинают погружение. Сжа­тый воздух начинают подавать в кессонную камеру, как только ее нижняя часть достигнет уровня подземных вод. Давление воздуха, обеспечивающее отжим воды из камеры кессона, определяется из условия

pb = Нw, (13.6)

где pb — избыточное (сверх атмосферного) давление воздуха, кПа;

Нw — гидростатический напор на уровне банкетки ножа, м; w— удельный вес воды, кН/м3.

По мере погружения кессона в грунт наращивают шахтные трубы, если это необходимо, и возводят надкессонную часть соору­жения.

После опускания кессона на проектную глубину все специальное оборудование демонтируется, а рабочая камера заполняется бето­ном.

Грунт в камере кессона разрабатывается ручным или гидромеха­ническим способом.

Ручная разработка грунта применяется при погружении кессонов в породы, не поддающиеся размыву (плотные глинистые, скальные грунты и т. п.). В этих случаях грунт разрабатывается ручным механизированным инструментом (отбойные молотки, пневмобуры), а разрушение скальных пород и дробление валунов произво­дится взрывным способом мелкими шпуровыми зарядами. Разра­ботанный грунт грузится в бадьи, подвешенные к смонтированному на потолке камеры монорельсу, и подается к шахтному отверстию.

При разработке грунта следят за равномерным погружением кессона. Если замечают перекосы и крены, то замедляют разработ­ку грунта с одной стороны кессона и усиливают с противоположной.