Файл: Экзаменационные вопросы по общественному здоровью и здравоохранению.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 09.11.2023

Просмотров: 439

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


Клинико-статистическое исследование - использование статистических методов при обработке результатов клинических, экспериментальных и лабораторных исследований; позволяет с количественной точ­ки зрения оценить достоверность результатов исследования и ре­шить ряд других задач.

Особенности клинико-статистического исследования:

а) выборочное исследование

б) выборка малая

в) результаты обрабатываются не параметрическими методами исследования

г) наличие всегда конкретной группы либо копии (паракопии)

д) единица наблюдения чаще всего - пациент

76. Относительные величины, виды, методы расчета. Использование в работе врача. Возможные ошибки в применении относительных величин.

Относительные величины (показатели, коэффициенты) получают­ся в результате отношения одной абсолютной величины к другой. Наиболее часто используются следующие показатели:

а) интенсивные - показатели частоты, интенсивности, распростра­ненности явления в среде, продуцирующей данное явление.

В здравоохранении изучаются заболеваемость, смертность, инвалидность, рождаемость и другие показатели здоровья населения. Средой, в ко­торой происходят процессы, является население в целом или его от­дельные группы (возрастные, половые, социальные, профессио­нальные и др.). В медико-статистических исследованиях явление представляет собой как бы продукт среды. Например, население (среда) и заболевшие (явление); больные (среда) и умершие (яв­ление) и т. д.



Величина основания выбирается в соответствии в величиной пока­зателя - на 100, 1000, 10000, 100000, в зависимости от этого показатель выражается в процентах, промилле, продецимилле,просан­тимилле.

Интенсивные показатели могут быть

1. общими - характеризуют явление в целом (общие показатели рождаемости, смертности, заболеваемос­ти, вычисленные ко всему населению административной территории)

2. специальными (погрупповыми)
- применяются для характеристики частоты явления в различных группах ( заболе­ваемость по полу, возрасту, смертность среди детей в возрасте до 1 года, летальность по отдельным нозологическим формам и т.д.)

Интенсивные показатели применяются в медицине:

- для определения уровня, частоты, распространенности явления

- для сравнения частоты явле­ния в двух различных совокупностях

- для изучения изменений часто­ты явления в динамике.

б) экстенсивные - показатели удельного веса, структуры, характе­ризуют распределение явления на составные части, его внутреннюю структуру. Вычисляются экстенсивные показатели отношением части явления к целому и выражаются в процентах или долях единицы.



Экстенсивные показатели используются для определения структу­ры явления и сравнительной оценки соотношения составляющих его частей. Экстенсивные показатели всегда взаимосвязаны между собой, т. к. их сумма всегда равна 100 процентам: так, при изучении структуры заболеваемости удельный вес отдельного заболевания мо­жет возрасти:

- при истинном росте числа заболеваний

- при одном и том же его уров­не, если число других заболеваний снизилось

- при снижении числа данного заболевания, если уменьшение числа других заболеваний происходит более быстрыми темпами.

При анализе экстенсивный показатель следует применять с осторожностью и помнить, что им пользуются только для характеристики состава (структуры) явления в данный момент времени и в данном месте.

Примеры использования в работе врача: лейкоцитарная формула; структура населения по полу, возрасту, социальному положению; структура заболеваний по нозологии; структура причин смерти.

в) соотношения - представляют собой соотношение двух самостоя­тельных, независимых друг от друга, качественно разнородных вели­чи, сопоставляемых только логически.

Примеры использования в работе врача: показатели обеспеченности населения врачами, больничными койками; показатели, отражающие число лабораторных исследований на 1 врача и т.д.



г) наглядности - применяются с целью более наглядного и дос­тупного сравнения статистических величин. Показатели наглядности представляют удобный способ преобразования абсолютных, относи­тельных или средних величин в легкую для сравнения форму. При вы­числении этих показателей одна из сравниваемых величин приравни­вается к 100 (или 1), а остальные величины пересчитываются соответственно этому числу.



Показатели наглядности указывают, на сколько процентов или во сколько раз произошло увеличение или уменьшение сравниваемых ве­личин. Показатели наглядности используются чаше всего для сравне­ния данных в динамике, чтобы представить закономерности изучае­мого явления в более наглядной форме.

При пользовании относительными величинами могут быть допущены некоторые ошибки:

1. иногда судят об изменении частоты явления на основе экстенсив­ных показателей, которые характеризуют структуру явления, а не его интенсивность.

2. нельзя складывать и вычитать статистические показатели, кото­рые рассчитаны из совокупностей, имеющих разную численность, ибо это приводит к грубым искажениям показателя.

3. при расчете специальных показателей следует правильно выби­рать знаменатель для расчета показателя: например, показатель послеоперационной летальности необходимо рассчитывать по отно­шению к оперированным, а не всем больным.

4. при анализе показателей следует учитывать фактор времени: нельзя сравнивать между собой показатели, вычисленные за раз­личные периоды времени (показатель заболеваемости за год и за полугодие), что может привести к ошибочным суждениям.

5. нельзя сравнивать между собой общие интенсивные показатели, вычисленные из неоднородных по составу совокупностей, пос­кольку неоднородность состава среды может влиять на величину интенсивного показателя.

77. Интенсивные и экстенсивные показатели. Методика расчета, единицы измерения, использование в работе учреждений здравоохранения.

См. вопрос 76

78. Показатели соотношения и наглядности. Методика расчета, единицы измерения, применение в здравоохранении.

См. вопрос 76.

79. Вариационный ряд, его элементы, виды, правила построения


См. вопрос 80.

80. Средние величины, виды, методика расчета. Применение в работе врача.

Средние величины дают обобщающую характеристику статистичес­кой совокупности по определенному изменяющемуся количественному признаку. Средняя величина характеризует весь ряд наблюдений одним чис­лом, выражающим общую меру изучаемого признака. Она нивелирует случайные отклонения отдельных наблюдений и дает типичную харак­теристику количественного признака.

Требования к средним величинам:

1) качественная однородность совокупности, для которой рассчиты­вается средняя величина - только тогда

она будет объективно отображать ха­рактерные особенности изучаемого явления.

2) средняя величина должна основываться на массовом обобще­нии изучаемого признака, т.к. только тогда она выражает типич­ные размеры признака

Средние величины получаются из рядов распределения (вариа­ционных рядов).

Вариационный ряд- ряд однородных статистических величин, ха­рактеризующих один и тот же количественный учетный признак, отли­чающихся друг от друга по своей величине и расположенных в опре­деленном порядке (убывания или возрастания).

Элементы вариационного ряда:

а) варианта - v - числовое значение изучаемого меняющегося коли­чественного признака.

б) частота - p (pars) или f (frequency) - повторяемость вариант в вариационном ряду, показывающая, как часто встречается та или иная варианта в составе данного ряда.

в) общее число наблюдений- n (numerus) - сумма всех частот: n=ΣΡ. Если общее число наблюдений более 30,статистическая выборка считается большой, если n меньше или равно 30 - малой.

Вариационные ряды бывают:

1. в зависимости от значения варианты:

а) прерывные (дискретные), состоящие из целых чисел

б) непрерывные, когда значения вариант выражены дроб­ным числом. В прерывных рядах смежные варианты отличаются друг от друга на целое число (число ударов пульса, число дыха­ний в минуту, число дней лечения). В непрерывных рядах ва­рианты могут отличаться на любые дробные значения единицы.

2. в зависимости от частоты встречаемости признака:

а) простой - ряд - каждая варианта встречается один раз, т.е. частоты равны единице.

б) обычный - ряд, в котором варианты встречаются более одного ра­за.

в) сгруппированный- ряд, в котором варианты объединены в группы по их величине в пределах определенного ин­тервала с указанием частоты повторяемости всех вариант, входящих в группу.


Сгруппированный вариационный ряд используют при большом числе наблюдений и больном размахе крайних значений вариант.

Обработка вариационного ряда заключается в получении парамет­ров вариационного ряда (средней величины, среднего квадратичес­кого отклонения и средней ошибки средней величины).

3. в зависимости от числа наблюдений:

а) четные и нечетные

б) большой (при числе наблюдений больше 30) и малый (если число наблюдений меньше или равно 30)

Виды средних величин:

а) мода (Мо) - величина признака, чаще других встречающаяся в со­вокупности. За моду принимают варианту, которой соответствует наибольшее количество частот вариационного ряда.

б) Медиана (Me) - величина признака, занимающая срединное значе­ние в вариационном ряду. Она делит вариационный ряд на две рав­ные части.

На величину моды и медианы не оказывают влияния числовые зна­чения крайних вариант, имеющихся в вариационном ряду. Они не всегда могут точно характеризовать вариационный ряд и применяют­ся в медицинской статистике относительно редко. Более точно ха­рактеризует вариационный ряд средняя арифметическая величина.

в) Средняя арифметическая(М, или ) - рассчитывается на осно­ве всех числовых значений изучаемого признака.

Реже применяются другие средние величины: средняя геометрическая (при обработке результатов титрования антител, токсинов, вакцин); средняя квадратическая (при определении среднего диаметра среза клеток, результатов накожных иммунологических проб); средняя кубическая (для определения среднего объема опухолей) и другие.

В простом вариационном ряду, где варианты встречаются только по одному разу, вычисляется средняя арифметическая простая по формуле:

, где V - числовые значения вариант, n - число наблюдений, Σ - знак суммы

В обычном вариационном ряду вычисляется средняя арифметичес­кая взвешенная по формуле:
, где V - числовые значения вариант, р - частота встречаемости вариант, n - число наблюдений.

Средние величины являются важными обобщающими характеристика­ми совокупности. Однако за ними скрываются индивидуальные значе­ния признака. Средние величины не показывают изменчивости, колеб­лемости признака. Если вариационный ряд более компактен, менее рассеян и все от­дельные значения расположены вокруг средней, то средняя величина дает более точную характеристику данной совокупности. Если вариа­ционный ряд растянут, отдельные значения значительно отклоняются от средней, т.е. имеется большая вариабельность количественного признака, то средняя менее типична, хуже отражает в целом весь ряд.