Файл: Контрольная работа 3 Вариант 1 Вычислить пределы, не используя правило Лопиталя 1 2.doc
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 09.11.2023
Просмотров: 45
Скачиваний: 2
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
;
1.1 ; 1.2 .
2.1 ;
2.2 ;
2.3 .
3.1 ; 3.2 .
на отрезке [-4, 2].
.
Вариант № 23
1.1 ; 1.2 ;
1.3 ; 1.4 .
2.1 ;
2.2 ;
2.3 .
3.1
; 3.2 .
на отрезке [-1, 7].
.
Вариант № 24
1.1 ; 1.2 ;
1.3 ; 1.4 .
2.1 ;
2.2 ;
2.3 .
3.1 ; 3.2 .
на отрезке [1, 10].
.
Вариант № 25
1.1 ; 1.2 ;
1.3
; 1.4 .
2.1 ;
2.2 ;
2.3 .
3.1 ; 3.2 .
на отрезке [-2, 4].
.
Вариант № 26
1.1 ; 1.2 ;
1.3 ; 1.4 .
2.1 ;
2.2 ;
2.3 .
3.1 ; 3.2 .
на отрезке [-2, 1].
.
Вариант № 27
1.1 ; 1.2 ;
1.3 ; 1.4 .
2.1 ;
2.2 ;
2.3 .
3.1 ; 3.2 .
на отрезке [-2, 1].
.
Вариант № 28
1.1 ; 1.2 ;
1.3 ; 1.4 .
2.1 ;
2.2 ;
2.3 .
3.1 ; 3.2
на отрезке [-2, 1].
.
Вариант № 29
1.1 ; 1.2 ;
1.3 ; 1.4 .
2.1 ;
2.2 ;
2.3
1.1 ; 1.2 .
-
Найти производные функций:
2.1 ;
2.2 ;
2.3 .
-
Найти пределы функций, используя правило Лопиталя:
3.1 ; 3.2 .
-
Найти наибольшее и наименьшее значения функции
на отрезке [-4, 2].
-
Провести полное исследование функции и построить ее график:
.
Вариант № 23
-
Вычислить пределы, не используя правило Лопиталя:
1.1 ; 1.2 ;
1.3 ; 1.4 .
-
Найти производные функций:
2.1 ;
2.2 ;
2.3 .
-
Найти пределы функций, используя правило Лопиталя:
3.1
; 3.2 .
-
Найти наибольшее и наименьшее значения функции
на отрезке [-1, 7].
-
Провести полное исследование функции и построить ее график:
.
Вариант № 24
-
Вычислить пределы, не используя правило Лопиталя:
1.1 ; 1.2 ;
1.3 ; 1.4 .
-
Найти производные функций:
2.1 ;
2.2 ;
2.3 .
-
Найти пределы функций, используя правило Лопиталя (если оно применимо в данном случае):
3.1 ; 3.2 .
-
Найти наибольшее и наименьшее значения функции
на отрезке [1, 10].
-
Провести полное исследование функции и построить ее график:
.
Вариант № 25
-
Вычислить пределы, не используя правило Лопиталя:
1.1 ; 1.2 ;
1.3
; 1.4 .
-
Найти производные функций:
2.1 ;
2.2 ;
2.3 .
-
Найти пределы функций, используя правило Лопиталя (если оно применимо в данном случае):
3.1 ; 3.2 .
-
Найти наибольшее и наименьшее значения функции
на отрезке [-2, 4].
-
Провести полное исследование функции и построить ее график:
.
Вариант № 26
-
Вычислить пределы, не используя правило Лопиталя:
1.1 ; 1.2 ;
1.3 ; 1.4 .
-
Найти производные функций:
2.1 ;
2.2 ;
2.3 .
-
Найти пределы функций, используя правило Лопиталя (если оно применимо в данном случае):
3.1 ; 3.2 .
-
Найти наибольшее и наименьшее значения функции
на отрезке [-2, 1].
-
Провести полное исследование функции и построить ее график:
.
Вариант № 27
-
Вычислить пределы, не используя правило Лопиталя:
1.1 ; 1.2 ;
1.3 ; 1.4 .
-
Найти производные функций:
2.1 ;
2.2 ;
2.3 .
-
Найти пределы функций, используя правило Лопиталя (если оно применимо в данном случае):
3.1 ; 3.2 .
-
Найти наибольшее и наименьшее значения функции
на отрезке [-2, 1].
-
Провести полное исследование функции и построить ее график:
.
Вариант № 28
-
Вычислить пределы, не используя правило Лопиталя:
1.1 ; 1.2 ;
1.3 ; 1.4 .
-
Найти производные функций:
2.1 ;
2.2 ;
2.3 .
-
Найти пределы функций, используя правило Лопиталя (если оно применимо в данном случае):
3.1 ; 3.2
-
Найти наибольшее и наименьшее значения функции
на отрезке [-2, 1].
-
Провести полное исследование функции и построить ее график:
.
Вариант № 29
-
Вычислить пределы, не используя правило Лопиталя:
1.1 ; 1.2 ;
1.3 ; 1.4 .
-
Найти производные функций:
2.1 ;
2.2 ;
2.3