Добавлен: 03.02.2019

Просмотров: 21630

Скачиваний: 19

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
background image

Radio Receivers 12-3

Doppler Effect

12-34

Transfer Function

12-37

Time Response of Channel Impulse Response & Transfer Function

12-39

References

12-40

Chapter 12.3: AM and FM Receivers

12-41

Introduction

12-41

Superheterodyne Receiver

12-41

Radio Wave Propagation

12-43

AM Band Propagation

12-43

FM Band Propagation

12-43

Radio Receivers

12-44

Antenna Systems

12-45

Antenna Coupling Network

12-45

Whip Antenna

12-45

Loop Antenna

12-46

Filter Types

12-47

LC Filter

12-48

Quartz Crystal Filter

12-48

Monolithic Quartz Filter

12-48

Ceramic Filter

12-49

RF Amplifier and AGC

12-49

The AGC Loop

12-50

Mixer

12-51

Passive Mixer

12-52

Active Mixer

12-53

Local Oscillator

12-54

PLL Synthesizer

12-55

Frequency Divider

12-56

Variable-Frequency Oscillator

12-56

Diode Switching

12-57

Crystal-Controlled Oscillator

12-59

AM-FM Demodulation

12-59

AM Demodulation

12-62

FM Demodulation

12-64

Amplitude Limiter

12-66

Stereo Systems

12-68

FM Stereo

12-68

Generating the Stereo Signal

12-69

Decoding the Stereo Signal

12-70

AM Stereo

12-71

Decoding the C-QUAM Signal

12-71

References

12-73

Bibliography

12-73

Chapter 12.4: Stereo Television

12-75

Introduction

12-75

Audio Chain

12-75

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)

Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.

Radio Receivers


background image

12-4 Section Twelve

Stereo Generator

12-75

Subchannel Filters

12-78

Audio System Specifications and Performance Objectives

12-78

Frequency Response

12-80

Signal-to-Noise Ratio (SNR)

12-80

Total Harmonic Distortion (THD)

12-80

Intermodulation Distortion (IMD)

12-80

Separation

12-81

Headroom

12-81

Channel-to-Channel Amplitude and Phase Tracking

12-81

Stereo Generator Specifications and Performance Objectives

12-81

Separation

12-81

Linear Crosstalk

12-82

Nonlinear Crosstalk

12-82

Spurious Suppression

12-82

Deviation Calibration

12-83

Composite STL Specifications and Performance Objectives

12-83

Signal-to-Noise Ratio

12-83

Distortion

12-83

Amplitude Stability

12-84

Aural Exciter Specifications and Performance Objectives

12-84

Signal-to-Noise Ratio

12-84

Amplitude Stability

12-84

References

12-84

Reference Documents for this Section

Amos, S. W.: “FM Detectors,” Wireless World, vol. 87, no. 1540, pg. 77, January 1981.

Benson, K. Blair, and Jerry C. Whitaker: Television and Audio Handbook for Engineers and

Technicians, McGraw-Hill, New York, N.Y., 1990.

Engelson, M., and J. Herbert: “Effective Characterization of CDMA Signals,” Microwave Jour-

nal, pg. 90, January 1995.

Howald, R.: “Understand the Mathematics of Phase Noise,” Microwaves & RF, pg. 97, Decem-

ber 1993.

Johnson, J. B:, “Thermal Agitation of Electricity in Conduction,” Phys. Rev., vol. 32, pg. 97, July

1928.

Nyquist, H.: “Thermal Agitation of Electrical Charge in Conductors,” Phys. Rev., vol. 32, pg.

110, July 1928.

Pleasant, D.: “Practical Simulation of Bit Error Rates,” Applied Microwave and Wireless, pg. 65,

Spring 1995.

Rohde, Ulrich L.: Digital PLL Frequency Synthesizers, Prentice-Hall, Englewood Cliffs, N.J.,

1983.

Rohde, Ulrich L.: “Key Components of Modern Receiver Design—Part 1,” QST, pg. 29, May

1994.

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)

Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.

Radio Receivers


background image

Radio Receivers 12-5

Rohde, Ulrich L. Rohde and David P. Newkirk: RF/Microwave Circuit Design for Wireless

Applications, John Wiley & Sons, New York, N.Y., 2000.

Rohde, Ulrich L, and Jerry C. Whitaker: Communications Receivers, 3rd ed., McGraw-Hill,

New York, N.Y., 2000.

“Standards Testing: Bit Error Rate,” application note 3SW-8136-2, Tektronix, Beaverton, OR,

July 1993.

Using Vector Modulation Analysis in the Integration, Troubleshooting and Design of Digital RF

Communications Systems, Product Note HP89400-8, Hewlett-Packard, Palo Alto, Calif.,
1994.

Watson, R.: “Receiver Dynamic Range; Pt. 1, Guidelines for Receiver Analysis,” Microwaves &

RF, vol. 25, pg. 113, December 1986.

“Waveform Analysis: Noise and Jitter,” application note 3SW8142-2, Tektronix, Beaverton, OR,

March 1993.

Wilson, E.: “Evaluate the Distortion of Modular Cascades,” Microwaves, vol. 20, March 1981.

Whitaker, Jerry C. (ed.): NAB Engineering Handbook9th ed., National Association of Broad-

casters, Washington, D.C., 1999.

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)

Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.

Radio Receivers


background image

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)

Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.

Radio Receivers


background image

12-7

Chapter

12.1

Receiver Characteristics

Ulrich L. Rohde

Jerry C. Whitaker, Editor-in-Chief

12.1.1 Introduction

1

The superheterodyne receiver makes use of the heterodyne principle of mixing an incoming sig-
nal with a signal generated by a local oscillator (LO) in a nonlinear element (Figure 12.1.1).
However, rather than synchronizing the frequencies, the superheterodyne receiver uses a LO fre-
quency offset by a fixed intermediate frequency (IF) from the desired signal. Because a nonlin-
ear device generates identical difference frequencies if the signal frequency is either above or
below the LO frequency (and also a number of other spurious responses), it is necessary to pro-
vide sufficient filtering prior to the mixing circuit so that this undesired signal response (and oth-
ers) is substantially suppressed. The frequency of the undesired signal is referred to as an image
frequency
, and a signal at this frequency is referred to as an image. The image frequency is sepa-
rated from the desired signal frequency by a difference equal to twice the IF. The preselection fil-
tering required at the signal frequency is much broader than if the filtering of adjacent channel
signals were required. The channel filtering is accomplished at IF. This is a decided advantage
when the receiver must cover a wide frequency band, because it is much more difficult to main-
tain constant bandwidth in a tunable filter than in a fixed one. Also, for receiving different signal
types, the bandwidth can be changed with relative ease at a fixed frequency by switching filters
of different bandwidths. Because the IF at which channel selectivity is provided is often lower
than the signal band frequencies, it may be easier to provide selectivity at IF, even if wide-band
RF tuning is not required.

1. This chapter is based on: Rohde, Ulrich L., and Jerry C. Whitaker: Communications Receiv-

ers: Principles and Design, 3rd ed., Mcgraw-Hill, New York, N.Y., 2000. Used with permis-
sion.

Source: Standard Handbook of Audio and Radio Engineering

Downloaded from Digital Engineering Library @ McGraw-Hill (www.digitalengineeringlibrary.com)

Copyright © 2004 The McGraw-Hill Companies. All rights reserved.

Any use is subject to the Terms of Use as given at the website.