ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 13.12.2021
Просмотров: 874
Скачиваний: 4
Теплообмен – это передача энергии под воздействием хаотического, теплового движения микрочастиц, составляющих макроскопические тела, при наличии разности температур соприкасающихся тел. В этом случае количество передаваемой энергии называют теплотой или теплотой процесса. Теплота является функцией процесса, так как зависит от пути процесса. Теплота – это микроскопическая форма передачи энергии.
Надо иметь в виду, что работа и теплота не являются энергией или ее видом, а является лишь двумя способами передачи энергии, двумя способами обмена энергией. Они могут вызывать во взаимодействующих телах изменение движения материи любой формы.
-
Термодинамическая система
Термодинамической системой (ТС) называется совокупность тел, обменивающихся между собой и окружающей средой энергией и веществом. Объектом изучения может быть вещество - термодинамическое рабочее тело (ТРТ), как частный случай ТС, или совокупность тел, состоящая из источника тепла, холодильника, ТРТ и аккумулятора работы и составляющая ТС. Тела, не входящие в состав исследуемой ТС, объединяются общим понятием «окружающая среда». На границе ТС и окружающей среды происходит взаимодействие между ТС и окружающей средой, которое заключается в передаче энергии и вещества в ТС и из нее. Число воздействующих на ТС сил определяется числом степеней свободы ТС-N.
Если на ТС воздействуют только силы нормального давления – р и температуры – Т, т.е. число степеней свободы ТС N=2, то такая ТС называется простой или термодеформационной. Примером такой ТС может служить рабочее тело в цилиндре поршневого двигателя. Если число степеней свободы ТС N>2, то такие ТС называются сложными. Например, если кроме давления р и температуры Т на ТС воздействуют электрические и магнитные поля (N=4).
В зависимости от характера взаимодействия между ТС и окружающей средой, т.е. в зависимости от свойств границы между ТС и окружающей средой различают:
- закрытые или замкнутые термодинамические системы, если граница ТС непроницаема для вещества, т.е. отсутствует массообмен между ТС и окружающей средой;
- открытые термодинамические системы, если имеется массообмен между ТС и окружающей средой и через границу ТС переходит вещество;
- проточные термодинамические системы, как частный случай открытых ТС, когда на одних участках границы вещество входит в ТС, а на других участках границы выходит из ТС;
- изолированные ТС, когда границу системы не пересекают ни потоки вещества, ни потоки энергии;
- адиабатные ТС, когда система не обменивается с окружающей средой теплотой, т.е. термодинамическая система находится в тепловой изоляции.
В термодинамике обычно рассматриваются неподвижные макроскопические ТС в системе координат, связанной с центром масс ТС.
-
Вещество. Фазы. Агрегатные состояния
Под веществом понимается материя, обладающая массой покоя.
Чистое вещество – это вещество, состоящее из одинаковых структурных частиц, т.е. из частиц одинакового вида. При этом под частицами понимаются молекулы, атомы, положительные или отрицательные ионы, электроны.
Индивидуальным веществом называется чистое вещество в определенном фазовом состоянии. Например, С (графит), С (алмаз), С (газ).
Тела могут находиться в ТС в различных агрегатных состояниях: твердом (т), жидком (ж) и газообразном (г). Плазма с точки зрения термодинамики – это ионизированный газ со специфическими свойствами. Пар – это газ, контактирующий со своей конденсированной фазой, и деление на пар и газ является условным. Примеры обозначения агрегатного состояния: СО2 (т), Н2О (ж), Н2О (г).
Фаза – это гомогенная часть гетерогенной ТС, ограниченная поверхностью раздела. Гетерогенная ТС – это ТС, состоящая из двух и более фаз.
Гомогенная ТС – это ТС, между любыми частями которой нет поверхностей раздела. Гомогенная ТС, во всех частях которой свойства системы одинаковые, называется однородной ТС.
Фаза, содержащая одно вещество, называется чистой фазой.
Конденсированная ТС – это ТС, состоящая только из твердых и жидких фаз.
Многокомпонентрая ТС – это ТС, состоящая из двух и более индивидуальных веществ (компонентов ТС). Такими ТС являются растворы, сплавы и смеси. Если в фазе находится несколько газообразных веществ, то это газовая смесь.
-
Состояние термодинамической системы. Параметры и функции состояния.
Состояние рассматриваемой ТС определяется совокупностью физических величин, характеризующих данную ТС. По изменениям этих величин можно проследить за изменениями в ТС при ее взаимодействии с окружающей средой.
Состояние ТС является равновесным, если в ТС наблюдается равномерное распределение физических величин. Так, для простой ТС во всех ее точках должны быть одинаковыми температура и давление. Если в ТС идут процессы выравнивания неравномерностей физических величин, то состояние системы является неравновесным. Состояние ТС изменяется в результате обмена энергией и массой между ТС и окружающей средой.
Параметрами и функциями состояния ТС называют физические величины, значения которых не зависят от пути, по которому ТС пришла в данное состояние, т.е. от предыстории ТС. К параметрам состояния относятся величины, которые имеют простую физическую природу и могут быть непосредственно измерены: температура Т, давление р, плотность и удельный объем v. Эти параметры выражают интенсивные свойства. Функции состояния имеют сложную физическую природу и не могут быть непосредственно измерены. К ним относятся: внутренняя энергия U, энтальпия Н, энтропия S и другие величины.
На ТС при взаимодействии ее с окружающей средой действуют термодинамические силы, которые называются потенциалами термодинамических воздействий или обобщенными силами. К ним относятся механические силы: давление р [Па], касательное напряжение р [Па], сила F [Н] и обобщенные силы немеханического характера: температура Т [К], напряженность магнитного поля Н [А/м], напряженность электрического поля Е [В/м].
Каждой обобщенной силе соответствует обобщенная координата. Обобщенными координатами называются параметры состояния, изменяющиеся при наличии взаимодействия данного рода. Так для простой ТС обобщенной силе – давлению р соответствует обобщенная координата – объем v, поскольку перемещение поршня приводит к изменению объема ТС. Для обобщенной силы – температуры Т роль обобщенной координаты выполняет энтропия S [Дж/К].
Различие значений обобщенной силы на границе между ТС и окружающей средой приводит к взаимодействию данного рода, т.е. к передаче энергии в данной форме. Это необходимое условие возникновения в ТС различных процессов: теплообмена и различных видов работ.
Все физические величины, характеризирующие ТС, подразделяются на независимые, которые задаются, и зависимые, которые вычисляются через известные параметры, а также на калорические и термические, интенсивные и экстенсивные, полные и относительные.
Калорические величины – это величины, которые выражаются в единицах энергии. Например: внутренняя энергия U[Дж], энтропия S[Дж/К], теплота Q [Дж], работа L [Дж], теплоемкость С [Дж/К] и др. Термические величины – это величины, чей физический смысл не связан непосредственно с понятием энергии. Например: термодинамическая температура Т [К], давление р [Па] и др.
Параметры, не зависящие от количества вещества ТС, выражают интенсивные свойства ТС. К ним относится:
-
термодинамическая температура Т,[К] (абсолютная термодинамическая шкала температур Кельвина), которая связана с эмпирической шкалой температур Цельсия t,0С (стоградусная международная температурная шкала) формулой:
Абсолютная термодинамическая шкала температур определяется с помощью тройной точки воды в качестве реперной точки со значением 273,15К, а нижней границей шкалы служит абсолютный нуль температур.
Эмпирической температурой называется мера отклонения тела от состояния теплового равновесия с тающим льдом, находящимся под давлением в 1 физическую атмосферу. Измеряется эта температура термометрами: ртутным, спиртовым, газовым и др. На термометре наносят исходные опорные точки-реперы, отвечающие устойчивым тепловым состоянием: таяния льда (00С) и кипения воды (1000С) при р=1 физ.атм.
Эмпирическая шкала температур Фаренгейта имеет реперную точку при температуре тающей смеси равных долей льда и нашатырного спирта, которая принимается за 00F. Эта точка лежит на 320 F ниже 00С, а интервал от 00С до 1000С соответствует 1800F. Таким образом, шкала Цельсия связана со шкалой Фаренгейта формулой:
.
Цена деления шкалы Реомюра больше, чем шкалы Цельсия, т.к. интервал от 00С до 1000С разбит на 80 частей.
-
Термодинамическое абсолютное давление:
, , [Па]
где рМ - манометрическое (избыточное) давление, измеряемое манометром; рБ – барометрическое (атмосферное) давление, измеряемое барометром; рВ – давление, измеряемое вакуумметром (избыток барометрического давления над абсолютным давлением).
Давление газа р численно равно силе, действующей на единицу площади поверхности и направленной по нормали к стенкам оболочки, в которой заключен газ. В системе СИ давление измеряется в Ньютонах на м2 или Паскалях, т.е. 1Н/м2=1Па. Связь с другими системами единиц:
1техн.атм = 0,968физ.атм = 9,81104Па
= 1кгс/см2 = 104кгс/м2 =
735ммНg =
= 10000,3ммН2О
= 0,981бар.
-
Удельный объем рабочего тела v=V/m, м3/кг, где V, м3– объем ТС; m, кг – масса ТС.
-
Плотность – масса единицы объема рабочего тела, или массовая концентрация:
, кг/м3.
К параметрам, выражающим интенсивные свойства ТС относятся также напряженности электрического и магнитного полей и др.
Экстенсивными или аддитивными (суммируемыми) называются величины, значения которых пропорциональны количеству вещества ТС. Будем их обозначать прописными (заглавными) буквами. К ним относятся: внутренняя энергия U, энтальпия H, объем V, энтропия S и др. Эти величины называются также полными для m кг ТС.
Если ТС состоит из отдельных частей, то значение экстенсивной величины для ТС равно сумме значений этой величины для всех частей ТС.
Для гомогенной, однородной ТС удобно использовать относительные величины:
-
Удельные величины, отнесенные к 1 кг вещества. Например: v=V/m – удельный объем, м3/кг; h=H/m – удельная энтальпия, Дж/кг; u=U/m - удельная внутренняя энергия, Дж/кг; s=S/m – удельная энтропия, Дж/кгК и др.
-
объемные величины, отнесенные к 1м3 вещества: - массовая концентрация, кг/м3 и др.
-
Молярные величины, отнесенные к 1 молю вещества. Будем обозначать эти величины прописными (заглавными) буквами со знаком «» сверху буквы: - молярный объем, м3/моль, где n – количество вещества, моль; - молярная масса, кг/моль; - молярная энтальпия, Дж/моль; - молярная внутренняя энергия, Дж/моль; - молярная энтропия, Дж/(мольК) и др.
Молем газа называется количество газа, весящего столько граммов, сколько единиц в относительной молекулярной массе М:
кг/моль.
Напомним, что в одном моле любого вещества содержится NА=6,0221023, моль-1, частиц (молекул) газа, где NA – число (постоянная) Авагадро. В соответствии с законом Авагадро в равных объемах разных газов при одинаковых давлении и температуре содержится равное число молекул. Массы молей разных газов различны, но их молярные объемы при одинаковых физических условиях одинаковы, т.е. не зависят от природы газа.
При t=00C и 1физ.атм м3/моль,
при t=150С и 1техн.атм м3/моль.
Для характеристики масс частиц вещества будем использовать величины:
-
Молекулярная масса – масса одной структурной частицы – m1, кг.
-
Относительная молекулярная масса .
М – величина безразмерная и приводится в таблицах для каждого индивидуального вещества в справочниках. -
Молярная масса – масса одного моля данного вещества , кг/моль, где NA – число Авагадро.
-
Термодинамические процессы и их классификация
Термодинамическим процессом называется изменение состояния ТС в результате ее взаимодействия с окружающей средой. Термодинамические процессы могут быть равновесными и неравновесными.
Непрерывная последовательность равновесных состояний образует равновесный процесс, при котором отсутствуют потери энергии на трение, завихрение, излучение и др., а ТС совершает максимальную работу против внешних сил. Равновесный процесс можно изобразить на координатной плоскости в p-V координатах графически в виде плавно сменяющихся равновесных состояний.
При расширении газа процесс идет с увеличением объема ТС. При этом ТС совершает работу
, Дж.
Работа расширения положительна (L>0). Процесс, идущий с уменьшением объема ТС, называется процессом сжатия. Работа, затрачиваемая на сжатие газа, отрицательна (L<0).
В термодинамике большое применение получили частные случаи термодинамических процессов: изохорный процесс, протекающий при постоянном объеме (V=const); изобарный процесс, протекающий при постоянном давлении (p=const); изотермический процесс, протекающий при постоянной температуре (T=const) и адиабатный процесс, протекающий без теплообмена ТС с окружающей средой ( и q=0).
Круговой процесс (цикл) – это процесс, при котором ТС, претерпев ряд изменений, возвращается в исходное состояние.
Прямой цикл – цикл тепловых двигателей,
идущий в p-V
координатах по часовой стрелке (линия
расширения лежит выше линии сжатия).
Обратный цикл – цикл холодильных
установок и машин-орудий, идущий в
p-V
координатах против часовой стрелки
(линия расширения лежит ниже линии
сжатия).
Процессы могут быть обратимыми и необратимыми. При обратимом процессе ТС, пройдя ряд состояний, может вернуться в начальное состояние через те же промежуточные состояния. При этом в ТС и окружающей среде не происходит никаких изменений. При этом процесс является равновесным, т.е. отсутствуют потери энергии на трение, теплообмен и др., а также обеспечивается механическое и термическое равновесие на границе ТС с окружающей средой (обеспечивается бесконечно малая разность давлений и температур в каждый момент процесса).
Все реальные процессы являются неравновесными и необратимыми и могут рассматриваться как равновесные и обратимые только в рамках некоторой идеализации, в рамках определенных допущений.