Файл: Лаб. прак. частина 1.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 20.12.2021

Просмотров: 1807

Скачиваний: 3

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Змінне поле не перевищує, як правило,1% постійного поля. Первинною причиною його є електричні струми, що течуть в верхніх шарах земної атмосфери та за її межами. Магнетні варіації поділяються на правильні періодичні (періодом в одну сонячну добу) і неправильні коливання різної форми і амплітуди — магнетні бурі. Вони досить різноманітні по інтенсивності та вигляду: від невеликих короткочасних коливань елементів земного магнетизму до магнетних бур тривалістю від одного до кількох днів, під час яких ампдітуди коливань магнетних елементів можуть перевищувати 10-2 Е. Магнетні бурі тісно зв’язані з іоносферними бурями, бурями земних струмів та полярними сяйвами. Сильні магнетоіоносферні бурі часто супроводжуються порушенням короткохвильового зв’язку.

Характерною формою малих бур є короткоперіодичні коливання, інколи правильного синусоїдального характеру, інколи- менш регулярні. Іншим типом малих бур є невеликі бурі, викликані спалахами ультрафіолетової радіації під час хромосферних вивержень Сонця, які часто супроводжуються повним поглинанням коротких радіохвиль та припиненням зв'язку на денній стороні Землі.


Теорія методу.

Якщо в данній точці Землі вільно підвішати магнетну стрілку (тобто підвішати за центр маси так, щоб вона могла повертатись і в горизонтальній і в вертикальній площинах), то вона встановиться за напрямком напруженості Н магнітного поля Землі в цій точці, тобто вісь стрілки складе кут з горизонтальною площиною і кут - з площиною географічного меридіана.

М агнетна стрілка, що може обертатись тільки навколо вертикальної осі, буде відхилятись в горизонтальній площині під дією горизонтальної складової Н0 . Слід відмітити, що магнетна стрілка встановлюється в певному напрямі під дією вектора індукції магнетного поля , а не вектора напруженості. Але в силу встановленої традиції будемо говорити про вектор напруженості. Це не внесе значної похибки, так як дослідження проводяться в повітрі і В = 0Н.

Розглянемо круговий провідник з N витків, прилягаючих достатньо густо один до одного, розташованих вертикально в площині магнетного меридіану. В центрі провідника помістимо магнетну стрілку, що може обертатись навколо вертикальної осі. Якщо через котушку пропустити струм I, то виникає магнетне поле з напруженістю Hm, направлене перпендикулярно до площини котушки. Таким чином, на стрілку буде діяти два взаємно перпендикулярних магнетних поля: магнетне поле Землі і магнетне поле струму. На рис.3. показано переріз котушки горизонтальною площиною. Тут Нm вектор напруженості поля, створеного коловим струмом, H0горизонтальна складова магнетного поля Землі. Стрілка встановиться за напрямом H1 , тобто за напрямком векторної суми Нm і H0 .

З рис. 3 слідує:

(1)

Напруженість в центрі колового струму знайдемо за законом Біо-Савара -Лапласа:


(2)

де N кількість витків, середній радіус яких рівний R; I значення сили струму в окремому витку.

З (1) та (2) знаходимо:

(3)

Для даного місця Землі і даного приладу величина

(4)

є постійною. Тоді

(5)

З формули (4) слідує, що постійна С чисельно дорівнює струму, який протікає через витки, коли кут відхилення стрілки = 45 .

Таким чином, коловий провідник з магнетною стрілкою в центрі може бути використаний для вимірювання значення струму. Прилад, оснований на цьому принципі, називається тангенс-гальванометром. Загальний вигляд тангенс-гальванометра показаний на рисунку 4.

Використаний в даній роботі тангенс-гальванометр складається з котушки 1, закріпленої на підставці 3, що обертається. В центрі котушки на вертикальній осі закріплена стрілка 2, під якою є лімб з поділками 4.


Хід роботи.

  1. Скласти схему.

Підставку 3 виставити на сферичній поверхні так, щоб кінці магнетної стрілки не торкались лімба 4.

  1. Повертаючи тангенс-гальванометр по поверхні 5, встановити його витки в площині магнетного меридіану (магнетна стрілка повинна встановитись на нулі).

  2. Ввімкнути котушку на N = 100 витків і, змінюючи струм реостатом R, добитися відхилення стрілки на 45. Записати значення струму I1 .

  3. Перемикачем П змінити напрямок струму в котушці і знову добитись відхилення стрілки на 45 в протилежний бік. Записати значення струму I2.

Рис.4

  1. Перевірити нульове встановлення приладу і повторити виміри для N2=75 i N3=50 витків. Записати значення струмів I1", I1, I2, I2.

  2. Штангенциркулем виміряти середній діаметр витків котушки.


Додаткове завдання.

  1. Перевірити, експериментально, справедливість рівності

  2. Дослідити вплив кута відхилення стрілки на точність визначення Н0.


Обробка результатів експерименту та їх аналіз

  1. Обчислити значення постійних С як середнє значення струмів:

  1. За формулою(5) обчислити Н0, Н0, Н0.

  2. Розрахувати середнє значення Н0, абсолюту Н0 і відносну E похибки по результатах трьох вимірювань.

  3. Обгрунтувати вибраний в даній роботі кут повороту стрілки на 45, провівши аналіз формули відносної похибки, одержаної з робочої формули, записаної у вигляді:


Контрольні запитання.

  1. Елементи земного магнетизму.

  2. Природа земного магнетизму.

  3. Cформулювати закон Біо-Савара-Лапласа.

  4. Вивести формулу для напруженості магнетного поля в центрі і на осі колового струму.

  5. Пояснити будову і принцип дії тангенс-гальванометра.

  6. . Чому виміри проводились при куті відхилення = 45 ?

Лабораторна робота №3-3

Визначення питомого заряду електрона методом магнетного фокусування

л. 1. §§41,43. 2. §§18.1,18.2,18.3,18.4

Мета роботи: визначити питомий заряд електрона з допомогою магнетного фокусування розбіжного електронного пучка.

Прилади та матеріали: електронно-променева трубка з блоком живлення; джерело постійного і змінного струмів; реостат; амперметр; вольтметр.



Теоретичні відомості

Питомий заряд електрона є важливою характеристикою, знання якого необхідне при розрахунках конструкцій різних електровакуумних приладів, електронно-оптичних установок, прискорювачів і т.д. Експериментальні методи визначення e/mзасновані на законах руху електронів в електричних і магнетних полях. Ці ж методи використовуються і для визначення маси частинок, якщо відомий їх заряд або заряду при відомій масі.

У даній лабораторній роботі використовується метод фокусування пучка електронів поздовжнім магнетним полем. Принципова схема установки показана на рис. 1.

Рис.1

Електрони, які вилетіли з нагрітого катоду К, прискорюються електричним полем, створеним між катодом і анодом А , входять через малий отвір в аноді розбіжним променем і, попавши на флуоресціюючий екран створюють світлу пляму.

Я кщо в просторі між анодом і екраном E створити магнетне поле з індукцією B , направленою вздовж осі x, то на електрон, який рухається в цьому полі з швидкістю , буде діяти сила Лоренца:

(1)

С ила F перпендикулярна як до напряму магнетного поля, так і до напряму руху електрона. Для електрона е < 0, тому сила буде направлена так, як показано на рис. 2.

Я кщо напрям руху електрона і магнетна індукція створюють кут , то швидкість можа розкласти на дві складові, одна із яких перпендикулярна, а інша паралельна магнетному полю:

(2)

Запишемо формулу (1) в скалярній формі


(3)

Таким чином, значення сили Лоренца визначається тільки нормальною складовою швидкості.

Розглянемо рух електронів як складний рух з швидкостями . Для випадку однорідного поля (B=const) числові значення і сили, діючої на електрон в цьому напрямку, залишаються незмінними .

Тому проекція траєкторії електронів на площину zoy буде колом. Паралельна складова швидкості електронів залишається постійною за абсолютною величиною і напрямом, так як магнетне поле не діє на частинку, яка рухається вздовж силових ліній.

У даному випадку рух електронів здійснюється по гвинтовій лінії, тобто з постійною швидкістю вздовж осі х і по колу в площини zoy.

Визначимо крок гвинтової лінії l. За другим законом Ньютона:

а врахувавши (3) і те, що , одержимо .

В результаті знаходимо радіус кола:

(4)

Очевидно, що час одного оберту:

(5)

З формул (4) і (5) одержуємо:

(6)

За час одного оберту електрон, рухаючись рівномірно вздовж осі х , пройде шлях, рівний кроку гвинтової лінії (рис. 3).

(7)

З формул (2), (6) і (7) одержуємо:

(8)

Так як в будь-якому випадку кут надзвичайно малий, то cos1, а вираз (8) перепишеться:

(9)

Рис.3

Це означає, що всі електрони, які вилетіли з отвору анода А з однаковою швидкістю за час Т в площині zoy описують повні кола і пере-міщуються вздовж осі х на віддаль l, тобто зберуться в одній точці (рис 4).

Потім електронний промінь знову розходиться і фокусується через новий проміжок часу Т в точці О2, яка віддалена від точки О на 2l т.д. У цьому полягає принцип фокусування електронних променів. Співвідношення (9) може бути використане для визначення питомого заряду електрона:


(10)


Рис.4.

Початкова швидкість електронів, що емітуються катодом нехтується, завдяки великим значенням анодної напруги U. Кінцева швидкість електронів визначається із співвідношення:

(11)

Із виразів (10) і (11) одержуємо остаточну формулу для експериментального визначення питомого заряду електрона :

(12)

Як видно із (4) і (9) крок гвинтової лінії і її радіус залежать від індукції B магнетного поля, тому, якщо поле неоднорідне, гвинтова лінія буде мати змінний крок і радіус. Але і в цьому випадку, якщо поле циліндрично симетричне, тобто джерело електронів розміщене на осі симетрії ох, кут для всіх електронів буде практично однаковим. Проекції траекторій електронів на площину zoy будуть у цьому випадку еліптичними, а не коловими, як показано на рис.4.


Теорія методу

Для вимірювання величини e/m використовується установка, схема якої показана на рис.5. Основна частина установки— електронно- променева трубка.

Електрони, що вилітають з нагрітого катода K, проходять через фокусуючий електрод К1 , а потім отвір в аноді і рухаються далі з постійною по величині швидкістю, значення якої визначається прискорюючою напругою U. Потім пучок електронів попадає в змінне електричне поле відхиляючих пластин С, направлене перпендикулярно до осі променя. Після конденсатора електрони попадають на екран трубки, покритий флуоресціюючою речовиною (ZnS) Точки екрану, на які попадають електрони, світяться, так-як при цьому атоми флуоресціюючої речовини збуджуються і на екрані створюється світла смуга.

Щоб кут був достатньо малим, довжина світлої смужки на екрані не повинна перевищувати 1,5-2 см. Електронно-променева трубка встановлена в середину соленоїда, що створює поздовжнє магнетне поле напруженістю Н , паралельне осі ох:

H = n I,

де I струм в соленоїді;

nчисло витків на одиницю довжини соленоїда. Під дією цього магнітного поля і відбувається фокусування електронного пучка, тобто електрони, збираються в одній точці (точка 01, на рис. 4). Відповідною зміною струму I в соленоїді, а значить і індукції магнетного поля

(13)

можна добитись того, щоб точка О1 співпала з екраном.

Тоді l буде дорівнювати віддалі між відхиляючими пластинами C і екраном E і залишається ста-лою величиною для даної точки.

Таким чином, вираз (12) з урахуванням (13) набуває вигляду:

(14)


Порядок виконання роботи

  1. Зібрати схему згідно рис.5. Після перевірки схеми лаборантом або викладачем ввімкнути її в мережу 220 В.

  2. Ввімкнути джерело живлення електронно-променевої трубки. На екрані з’явиться світла смужка. Вертикально-відхиляючі пластини в цьому випадку повинні бути заземлені.

  3. Замкнути ключ і підібрати з допомогою реостата такий струм в соленоїді, щоб світла смужка на екрані була зведена в точку.

  4. Зняти покази амперметра і вольтметра.



Обробка результатів експерименту і їх аналіз

  1. Розрахувати питомий заряд електрона за формулою (14). Значення n i l вказані на панелі установки.

  2. Порівняти одержаний результат e /m з табличним значенням і пояснити причини розходження цих результатів.


Контрольні запитання

  1. Подайте суть використаного в даній роботі методу магнітного фокусування електронних пучків.

  2. Як знаходять радіус і крок гвинтової лінії, вздовж якої рухаються електрони?


Лабораторна робота № 3-4

Визначення напруженості магнетного поля на

осі соленоїда

л. 1. §50.2. §§15.4, 15.5

Мета роботи: набути навиків вимірювання напруженості магнетного поля в різних точках вздовж осі соленоїда.

Прилади та матеріали: соленоїд з вимірювальною котушкою; балістичний гальванометр; амперметр; реостат; вимикач.


Теоретичні відомості

Напруженість магнетного поля на осі соленоїда в загальному випадку визначається за формулою:

(1)

де I – струм, що проходить по обмотці соленоїда;

n – кількість витків на одиницю довжини соленоїда;

1 та 2 кути під якими з точки спостереження видно радіуси поблизу кінців соленоїда (рис.1).

К оли діаметр і довжина соленоїда сумірні то такий соленоїд називається коротким. Для короткого соленоїда напруженість Н магнетного поля максимальна на осі соленоїда. В решті точок величина Н менша.

Для довгого соленоїда ( коли R<<l ) 1 0 , 2  і магнітне поле буде однорідним. Обчислимо напруженість магнетного поля для будь-якої точки на осі соленоїда.

З рис.1 видно, що

(2)

(3)

Тоді (4)

Величина n l = N повне число витків. Отже,

(5)

Поле багатошарового соленоїда якісно має той самий характер, як і поле одношарового.

У даній роботі напруженість магнетного поля визначається за допомогою балістичного гальванометра. Схему установки наведено на рис. 2. Балістичний гальванометр приєднується до вимірювальної котушки W. При замиканні вимикача К напруженість магнетного поля на осі соленоїда зростає від нуля до значення Н.

Магнетний потік, який пронизує при цьому вимірювальну котушку:

(6)

де S і N1 площа поперечного перерізу і число витків вимірювальної котушки.

У колі котушки W виникає короткочасний індукційний струм і рамка гальванометра відхиляється на деякий кут . Зміщення світлового “зайчика” відраховується по шкалі гальванометра.

Кількість електрики q, що пройде через гальванометр,

(7)

де Rk- опір кола гальванометра, Ом. (Складається з опору котушки і опору гальванометра) .

(8)


З другого боку, кількість електрики q пропорційна величині зміщення покажчика балістичного гальванометра від положення рівноваги :

(9)

де Сg стала балістичного гальванометра (рівна ціні однієї поділки шкали балістичного гальванометра).

З формул (8) і (9) маємо:

(10)

Величини S, N1, R, Rg, Cg, залишаються сталими при всіх вимірюваннях, тому введено позначення: