Файл: Лаб. прак. частина 1.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 20.12.2021

Просмотров: 1812

Скачиваний: 3

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Лабораторна робота № 1 -3

Вивчення центрального удару куль

л.1. §§ 16, 17, 24, 25

Мета роботи: експериментальне вивчення застосування законів збереження енергії та імпульсу до центрального удару куль.

Прилади і матеріали: установка для дослідження зіткнення тіл; штанген-циркуль; лінійка; терези з комплектом важків.

Теоретичні відомості

Центральним називається такий удар куль, при якому вектори швидкості руху куль у момент їх зіткнення лежать на прямій, що сполучає центри куль. Проміжок часу, протягом якого відбувається удар, здебільшого дуже малий і складає від 10-4 с до 10-6 с. При ударі на площинах контакту тіл виникають сили, що одержали назву ударних або миттєвих. Змінюються вони під час удару в широких межах і досягають значень, при яких середня величина тиску (на­пруги) на площинах контакту досягаю значення 109 і навіть 1010 Н/м2.

Дія ударних сил викликає значні зміни швидкостей всіх точок тіла протягом удару. Наслідком удару можуть бути також залишкові деформації, звукові коливання, нагрівання тіл та ін., а при швидкостях зіткнення, які переважають критичні значення, ­­- руйнування тіл в місці удару. Критичні швидкості, наприклад, для міді складають біля 15 м/с, а для високоякісної сталі - 150 м/с і більше.

Процес удару тіл поділяється на дві фази. Перша - починається з моменту дотикання тіл і продовжується до кінця їх зближення. При цьому частина кінетичної енергії тіл перетворюється в потенціальну енергію деформації.

Під час другої фази відбувається зворотній перехід потенціальної енергії пружної деформації в кінетичну енергію тіл. При цьому тіла починають розходитись одне від одного і під кінець другої фази вони рухаються в різних напрямках відносно загального центра мас.

Якщо після удару тіла повністю відновлюють свою форму і роз­міри, а механічна енергія набуває попереднього початкового значення, то удар називають абсолютно пружним.

Якщо ж удар закінчується на першій фазі і тіла після удару рухаються як одне ціле, то удар називається абсолютно непружним. Механічна енергія при цьому не зберігається, частина її перетворюється у внутрішню енергію тіл.

При ударі реальних тіл присутні обидві фази, але повного повернення форми тіл, що стикаються, не відбувається, що приводить до зменшення механічної енергії через втрати на залишкову деформацію ; нагрівання тіл та інше.

Повний опис процесів для двох або більшої кількості тіл, що стикаються, можливий лише в межах динамічних законів, які детально змальовують всі зміни системи з часом. Але може виявитись, що для даної системи тіл рівняння, які випливають з законів динаміки, дуже складні або відсутні відомості про деякі величини, що входять у ці рівняння.

У цьому випадку певні висновки про поведінку системи можна зробити, використовуючи закони збереження.


Найважливішими законами збереження, що дійсні для будь-яких ізольованих систем, тобто, таких систем, на тіла яких не діють зовнішні сили, є закони збереження енергії, імпульсу, моменту імпульсу та електричного заряду.

Зокрема, закон збереження імпульсу формулюється так: імпульс ізольованої системи тіл залишається сталим


(1)


Згадаємо, що імпульс системи визначається як геометрична сума імпульсів окремих тіл, що складають дану систему, а імпульс тіла - це вектор, рівний добутку маси тіла на його швидкість:



(2)


Імпульс системи тіл може бути визначений також добутком сумарної маси тіл системи mi на швидкість центра мас цієї системи .

Центр мас (центр інерції) - це геометрична точка, що характеризує розподіл маси в тілі чи в механічній системі. Радіус-вектор центра мас визначається співвідношенням:

(3)

де mi– маса;

Ri радіус-вектор і-того тіла. ­

Під час руху механічної системи її центр мас рухається так, як рухалась би матеріальна точка, що має масу, рівну масі системи і яка знаходиться під дією всіх зовнішніх сил, прикладених до системи. З останнього визначення та з закону збереження імпульсу випливає, що центр мас ізольованої системи або знаходиться в стані спокою, або рухається з сталою швидкістю.

До числа найважливіших відноситься закон збереження енергії, але в ньому мова йде про повну енергію системи, яка складається з енергії всіх видів руху матеріальних тіл. Для механічної енергії, що рівна сумі кінетичної та потенціальної енергії, також може бути сформульований закон збереження, але він не являється загальним,а відноситься до числа законів, які справджуються тільки для обмеженого класу систем і явищ. Механічна енергія зберігається при умові дії між тілами системи тільки консервативних сил. Консервативними називають такі сили, робота яких не залежить від форми шляху. До числа консервативних відносяться гравітаційні, пружні, електростатичні та деякі інші сили. Закон збереження механічної енергії має таке формулювання: повна механічна енергія ізольованої системи тіл, між якими діють тільки консервативні сили, залишається сталою.

Кажучи про закони збереження, слід відмітити, що особливо важливу роль ці закони відіграють в теорії елементарних частинок, де крім уже відомих відкрито багато специфічних законів збереження: баріонного заряду, лептонного заряду та інші. Значення законів збереження в теорії елементарних частинок визначається тим, що вони дозволяють легко знаходити правила відбору для реакцій між елементарними частинками, тобто встановлювати, які реакції в природі можливі, а які заборонені.

Згідно з сучасним уявленням закони збереження тісно пов'язані з властивостями симетрії фізичних систем. Теорема Нетер стверджує, що наявність у системі симетрії призводить до того, що для цієї системи існує фізична величина, яка зберігається. Ця теорема є особливо важливою, бо вона дозволяє на основі експериментально виявлених законів збереження робити висновки про фундаментальні властивості світу, в якому ми живемо.Так, наприклад, збереження енергії, імпульсу та моменту імпульсу зв'язані відповідно з однорідністю часу, однорідністю простору та ізотропністю простору.


Тому перевірка законів збереження являється одночасно перевіркою відповідних властивостей симетрії простору і часу.

Застосуємо закони збереження для вивчення центрального удару двох куль.

Для прямого центрального удару двох куль їх швидкості до удару (якщо система ізольована, то також і після удару) направлені вздовж прямої, що проходить через центри куль.

Розглянемо спочатку випадок, коли кулі, які створюють ізольовану систему, здійснюють абсолютно пружний удар. У цьому випадку виконуються закони збереження імпульсу та механічної енергії. Згідно з законом збереження імпульсу, імпульс двох куль до удару повинен бути рівним імпульсу цих же куль після удару:

(4)

Оскільки швидкості направлені вздовж однієї прямої, геометричну суму можна замінити сумою алгебраїчною:

m1 υ1 + m2 υ 2 = m1 U1 + m2 U2 . (5)


Вважаючи, що кулі взаємодіють тільки під час удару та враховуючи ізольованість системи, робимо висновок, що повна механічна енергія обох куль до і після удару дорівнює сумі їх кінетичних енергій в відповідні моменти часу. Тому відповідно законові збереження енергії можемо записати:

(6)


Рівняння (5) та (6) зведемо до виду:

m1 (υ 1 - U1 ) = m2 ( U2 υ2), (7)


m1 (υ 12 - U12 ) = m2 ( U22- υ 22). (8)


Поділивши (8) на (7), одержуємо:


υ 1 + U1 = U2 + υ 2 . (9)


Розв’язуючи систему рівнянь (7) та (9), знаходимо вирази для швидкості куль після удару:

(10)

(11)


Якщо маси куль однакові, то:


m1 = m2 = m. (12)


Підставивши (12) в (10) та (11), одержуємо:


; , (13)


Тобто кулі обмінюються швидкостями.

Знаючи масу та швидкості куль до і після удару, можна визначити середню силу удару куль. Для цього застосуємо другий закон Ньютона, наприклад, до другої кулі:

(14)

де час, протягом якого відбувався удар.

Якщо до удару друга куля була нерухома, то υ 2 = 0 (15)

підставляючи (12), (13), та (15) в (14), маємо:


(16)


У випадку абсолютно непружного удару двох куль виконується лише закон збереження імпульсу, на основі якого запишемо:

m1 υ 1 + m2 υ 2 = ( m1 +m2 ) U , (17)


де U швидкість обох куль після удару.

Звідки знаходимо

(18)


Втрату кінетичної енергії при абсолютно непружному ударі знайдемо як різницю кінетичних енергій обох куль до та після удару:


(19)

Підставивши (18) в (19) прийдемо до такого виразу:

(20)

У цій роботі для вимірювання початкових і кінцевих швидкостей куль, а також часу удару використовується прилад, який складається з штатива 1 (див. рис.1), на якому з допомогою спеціального пристрою 2 прикріплені підвіси з кулями 3, двох куто­мірних шкал 4, електромагніту 5 та секундоміра 6.

Рис. 1 Рис. 2


Для вивчення пружного удару використовуються стальні кулі, а при вивченні непружного удару - пластилінові. Електромагніт служить для утримання першої кулі в відхиленому на кут 1 положенні. Друга куля до початку вимірювань нерухома в положенні рівноваги.


Швидкість першої кулі безпосередньо перед ударом можна ви­рахувати, знаючи довжину підвісу та початковий кут відхилення кулі (Див.рис. 2 ).

Оскільки з положення А в положення В куля рухається тільки під дією гравітаційних сил, справджується закон збереження енергії, на основі якого можна записати:

(21)

При цьому вважається, що в положенні В потенціальна енергія дорівнює нулеві. З рисунка 2. видно, що:

(22)

З рівнянь (21) та (22) знаходимо:

(23)

За цією ж формулою визначаються швидкості куль після удару.

Час удару вимірюється електронним мілісекундоміром.

При виконанні лабораторної роботи необхідно мати на увазі, що використаний в ній метод вивчення законів збереження та спосіб вимірювання фізичних величин мають певні похибки, які безумовно впливають на кінцевий результат.

Дійсно, ми вважали систему куль ізольованою і не враховували сил тертя з боку кронштейна та повітря. Ми також вважали стальні кулі абсолютно пружними, а пластилінові – абсолютно непружними, що є ідеалізацією і не відповідає властивостям реальних тіл. Крім цього неминучі похибки при вимірюванні довжини підвісу та кутових відхилень куль, тому виконання законів збереження слід чекати в рамках цих похибок.


Порядок виконання роботи

А. Пружний удар куль.

  1. Повертаючи корбочку 7, встановити таку віддаль між стержнями, щоб кулі дотикались одна до одної.

  2. Встановити кутоміри так, щоб леза підвісів в положенні рівноваги показували на шкалах нулі. Шкали закріпити гайками.

  3. Ввімкнути секундомір в мережу; натиснути клавішу "Сеть" мілісекундо-міра; відпустити клавішу пуск "Старт". Праву кулю відхилити в бік елек-тромагніту і блокувати в цьому положенні.

  4. Записати значення кута 1; натиснути клавішу "Сброс"; натиснути клавішу пуск "Старт".

  5. Після зіткнення куль визначити значення кутів 1 і 2, а також записати час зіткнення.

  6. Дослід повторити не менше 10 разів та визначити середні значення кутів і часу за формулами:



  1. Виміряти висоту піднімання кулі за допомогою лінійки відповідно до рис.2.

  2. На аналітичних терезах визначити масу кулі з точністю 0,12г. При відсутності терезів масу розрахувати за формулою , де

9. Всі дані вимірювань занести в таблицю:

Таблиця 1

досліду

1,

град

1,

град

2,

град

h,

м

m,

кг

,

с









В. Непружний удар куль.

  1. Замінити на приладі стальні кулі пластиліновими.

  2. Виконати пункти 1- 4 завдання А.

  3. Після зіткнення куль визначити кут 2.

  4. Дослід повторити не менше 10 разів та визначити середнє значення кута за формулою:

  1. Виконати пункти 7 - 9 завдання А.


Таблиця 2.

досліду

1,

град

2,

град

m,

кг

l,

м








Обробка результатів експерименту та їх аналіз

А.1. За формулою (23), використовуючи дані таблиці 1, вирахувати швидкості куль до удару υ1 та υ2, а також після удару U1 та U2 .

2. За формулами (5) та (6) перевірити справедливість законів збереження. Виконати аналіз результатів експерименту.

3. За формулою (16) знайти середню силу удару. Оцінити її величину.

4. Знайти абсолютну та відносну похибки.

В.1. За формулою (23), використовуючи дані таблиці 2, вирахувати швидкості куль до удару υ1 та υ2, а також після удару U.

2. За формулою (17) перевірити справедливість закону збереження імпульсу.

3. За формулою (19) знайти втрати механічної енергії.

4. Виконати аналіз одержаних результатів та вирахувати абсолютну і відносну похибки експерименту.

Контрольні запитання

  1. Імпульс тіла. Закон збереження імпульсу. Центр мас системи.

  2. Удар. Абсолютно пружний та абсолютно непружний удари.

  3. Енергія. Види енергії в механіці. Закон збереження енергії. Чи завжди він справджується?

  4. Перерахуйте джерела похибок при виконанні даної роботи.


Лабораторна робота №1-4

Визначення швидкості кулі

з допомогою балістичного маятника

л.1. §§ 16, 17, 24, 25

Мета роботи: вивчення законів збереження при абсолютно непружному зіткненні тіл на прикладі ви­значення швидкості кулі.

Прилади і матеріали: балістичний маятник, пневматична гвинтівка, аналітичні терези, лінійка.

Опис установки

(Теоретичні відомості описані в лабораторній роботі 1 - 3 )

Балістичним маятником в нашій роботі являється масивний циліндр, запов-нений пластиліном і підвішений на практично нерозтяжних нитках (рис. 1).

На деякій віддалі від циліндра на його осі закріплена пневматична гвинтівка. При пострілі швидкість кулі направлена вздовж прямої, яка проходить через центр ваги маятника. Куля масою m після зіткнення за-стрягає в пластиліні маятника, тому удар вважають абсолютно непружним.

Так як маятник до удару був нерухомий, тобто υ1 = О, то із спів-відношення (1) лабораторної роботи № 3 одержимо:

(1)

де m маса кулі;

υ швидкість кулі перед ударом;

M – маса маятника.

Рис.1 (Установка для визначення швидкості польоту кулі.)


Якщо знехтувати силами тертя в нитках, на яких підвішений маятник і опором повітря, то система маятник-куля після удару є ізольованою і кон-сервативною. Тут можна використати закон збереження механічної енергії:

(2)


Таким чином, завдання зводиться до визначення висоти піднімання маятника після попадання в нього кулі.

але так як кут відхилення малий, можна вважати знаходимо тому

У межах похибки вимірювання можна вважати, що AB АС,

де AB=S – віддаль, на яку зміщується покажчик на лінійці L.

Остаточно одержуємо:

(3)


Використовуючи співвідношення (1)(3), одержуємо формулу для визначення швидкості кулі:


(4)


У співвідношенні (4) величини M, m, l, S визначаються експеримен-тально.