Файл: I. Роль тригонометрии в школьном курсе математики История развития тригонометрии.rtf
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 10.11.2023
Просмотров: 54
Скачиваний: 2
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
СОДЕРЖАНИЕ
Введение
Глава I. Роль тригонометрии в школьном курсе математики
История развития тригонометрии
Общие вопросы изучения тригонометрических функций в школьном курсе
Формирование понятия «тригонометрические уравнения»
Основные понятия и формулы тригонометрии
Решение тригонометрических уравнений
Рекомендации по решению тригонометрических уравнений
Глава II. Методы решения тригонометрических уравнений
Алгебраический метод
Разложение на множители
Приведение к однородному уравнению
Переход к половинному углу
Введение вспомогательного угла
Преобразование произведения в сумму
Универсальная подстановка
Уравнения, содержащие модуль функции и корень четной степени
Заключение
Литература
Приложение
ВВЕДЕНИЕ
В древности тригонометрия возникла в связи с потребностями астрономии, землемерия и строительного дела, то есть носила чисто геометрический характер и представляла главным образом «исчисление хорд».
В настоящее время изучению тригонометрических функций и тригонометрических уравнений уделяется большое внимание в школьном курсе алгебры и начал анализа.
Кроме того, большие трудности при изучении темы «Тригонометрические уравнения» в школьном курсе возникают из-за несоответствия между достаточно большим объемом содержания и относительно небольшим количеством часов, выделенным на изучение данной темы.
Решение тригонометрического уравнения состоит из двух этапов: преобразование уравнения для получения его простейшего вида и решение полученного простейшего тригонометрического уравнения. Существует семь основных методов решения тригонометрических уравнений.
Объектом исследования является процесс изучения тригонометрии в курсе старшей школы.
Предмет исследования - изучение тригонометрических уравнений в курсе алгебры и начала анализа.
Таким образом, основной целью написания данной курсовой работы является изучение тригонометрических уравнений в курсе алгебры и математического анализа.
В соответствии с целью, объектом и предметом исследования определены следующие задачи:
1) изучить историю тригонометрии;
2) рассмотреть общие вопросы изучения тригонометрических функций в школьном курсе;
3) рассмотреть формирование понятия «тригонометрические уравнения»;
4) охарактеризовать основные понятия и формулы тригонометрии;
) дать понятие решению тригонометрических уравнений;
) рассмотреть рекомендации по решению тригонометрических уравнений;
7) изучить методы решения тригонометрических уравнений.
Структура курсовой работы определена логикой и последовательностью поставленных задач. Курсовая работа состоит из введения, двух глав, заключения, списка литературы из 22 источников и приложения. Объем работы - 29 листов печатного текста.
ГЛАВА I. Роль тригонометрии в школьном курсе математики
.1 История развития тригонометрии
Термин «тригонометрия» дословно означает «измерение треугольников».
Понятие «тригонометрия» ввел в употребление в 1595 году немецкий математик и богослов Варфоломей Питиск, автор учебника по тригонометрии и тригонометрических таблиц.
В тригонометрии выделяют три вида соотношений
- между элементами плоского треугольника (тригонометрия на плоскости);
- между элементами сферического треугольника, то есть фигуры, высекаемой на сфере тремя плоскостями, проходящими через её центр (сферическая геометрия);
- между самими тригонометрическими функциями.
Потребность в решении треугольников раньше всего возникла в астрономии.
Древние наблюдали за движением небесных светил. Ученые обрабатывали данные измерений, чтобы вести календарь и правильно определять время начала сева и сбора урожая, даты религиозных праздников
Но и на Земле не всегда удавалось непосредственно определить расстояние между какими-то пунктами. И тогда вновь прибегали к косвенным измерениям. Например, вычисляли высоту дерева, сравнивая длину его тени с длиной тени от какого-нибудь шеста, высота которого была известна.
Подобные задачи сводятся к анализу треугольника, в котором одни его элементы выражают через другие. Этим и занимается тригонометрия
Поскольку звезды и планеты представлялись древним точками на небесной сфере, то сначала стала развиваться именно сферическая тригонометрия. Её считали разделом астрономии.
Первые открытые сведения по тригонометрии сохранились на клинописных табличках Древнего Вавилона. Именно от астрономов Междуречья мы унаследовали систему измерения углов в градусах, минутах и секундах, основанную на шестеричной или шестидесятеричной системе счисления.
«Альмагест» (II век) - знаменитое сочинение в 13 книгах греческого астронома и математика Клавдия Птолемея.
В «Альмагесте» автор приводит таблицу длин хорд окружности радиуса в 60 единиц, вычисленных с шагом 0,5° с точностью до единицы и объясняет, как таблица составлялась.
Труд Птолемея несколько веков служил введением в тригонометрию для астрономов. Во II веке до н. э. Астроном Гиппарх из Никеи составил таблицу для определения соотношений между элементами треугольников. Гиппарх подсчитал в круге заданного радиуса длины хорд, отвечающих всем углам от 0º до 180º, кратным 7,5º. По существу, это таблица синусов.
Если греки по углам вычисляли хорды, то индийские астрономы( IV- V в.в.) перешли к полухордам двойной дуги, то есть в точности к линиям синуса. Они пользовались и линиями косинуса - точнее, не его самого, а «обращенного» синуса.
К концу X века ученые исламского мира оперировали наряду с синусом и косинусом четырьмя другими функциями - тангенсом, котангенсом, секансом и косекансом. Они открыли и доказали несколько важных теорем плоской и сферической тригонометрии; использовали окружность единичного радиуса (что позволило толковать тригонометрические функции в современном стиле).
Арабские математики составили исключительно точные таблицы синусов и тангенсов с шагом 1’ и точностью до
Очень важной прикладной задачей была и такая: научиться определять направление на Мекку для пяти ежедневных молитв, где бы не находился мусульманин.
Особенно большое влияние на развитие тригонометрии оказал «Трактат о полном четырехугольнике» астронома Насиреддина ат-Туси (1201-1274). Это было первое в мире сочинение, в котором тригонометрия трактовалась как самостоятельная область математики.
Открытия ученых исламского мира долгое время оставались неизвестными европейским ученым, и тангенсы заново были открыты в XIV в. сначала английским ученым Т. Бравердином, а позднее немецким астрономом Региомонтаном (Иоганом Мюллером 1436-1476). Региомонтан составил обширные таблицы синусов (через 1 минуту с точностью до седьмой значащей цифры)
За таблицами Региомонтана последовал ряд других, еще более подробных. Друг Коперника Ретикус (1514-1576) вместе с несколькими помощниками в течение 30 лет работал над таблицами, законченными и изданными в 1596 году его учеником Ото. Углы шли через 10” ,синусы имели 15 верных цифр.
Дальнейшее развитие тригонометрии шло по пути накопления и систематизации формул, уточнения основных тождеств, становления терминологии и обозначений.
В настоящее время тригонометрические функции лежат в основе специального математического аппарата, так называемого гармонического анализа, при помощи которого изучаются различного рода периодические процессы: колебательные движения, распространение волн, некоторые атмосферные явления и пр.
.2 Общие вопросы изучения тригонометрических функций в школьном курсе
Основными целями изучения тригонометрических функций числового аргумента являются:
)ознакомление учащихся с новым видом трансцендентных функций;
)развитие навыков вычислительной практики (работа с трансцендентными функциями зачастую требует громоздких вычислений);
)наглядная иллюстрация всех основных свойств функций (в особенности периодичности);
)установление межпредметных связей с практикой (изучение колебаний маятника, электрического тока, волновой теории света невозможны без знаний о тригонометрических функциях);
)развитие логического мышления (обилие формул порождает необходимость преобразований не алгебраического характера, которые носят исследовательский характер).
В изучении тригонометрических функций можно выделить следующие этапы:. Первое знакомство с тригонометрическими функциями углового аргумента в геометрии. Значение аргумента рассматривается в промежутке (0о;90о). На этом этапе учащиеся узнают, что sin, сos, tg и ctg угла зависят от его градусной меры, знакомятся с табличными значениями, основным тригонометрическим тождеством и некоторыми формулами приведения.. Обобщение понятий синуса, косинуса, тангенса и котангенса для углов (0
о;180о). На этом этапе рассматривается взаимосвязь тригонометрических функций и координат точки на плоскости, доказываются теоремы синусов и косинусов, рассматривается вопрос решения треугольников с помощью тригонометрических соотношений.. Введение понятий тригонометрических функций числового аргумента.. Систематизация и расширение знаний о тригонометрических функциях числа, рассмотрение графиков функций, проведение исследования, в том числе и с помощью производной.
Отметим, что существует несколько способов определения тригонометрических функций. Их можно подразделить на две группы: аналитические и геометрические. К аналитическим способам относят определение функции у = sin х как решения дифференциального уравнения f ''(х)=-c*f(х) или как сумму степенного ряда sin х = х - х3 /3!+ х5 /5! - …
К геометрическим способам относят определение тригонометрических функций на основе проекций и координат радиус-вектора, определение через соотношения сторон прямоугольного треугольника и определения с помощью числовой окружности. В школьном курсе предпочтение отдается геометрическим способам в силу их простоты и наглядности.
Отметим, что изучение тригонометрических функций в школьном курсе имеет некоторые особенности. Во-первых, до изучения тригонометрических функций, рассматривались функции вида у=f(x), где х и у - некоторые действительные числа, здесь же - углу ставится в соответствие число, что является несколько непривычным для учащихся. Кроме того, раньше все функции задавались формулами, в которых явным образом был указан порядок действий над значениями аргумента для получения значений функции. Теперь же учащиеся сталкиваются с функциями, заданными таблично.
Таким образом, изучая тригонометрические функции, учащиеся лучше начинают разбираться в сущности самого понятия функции. Они начинают осознавать, что функцией может быть зависимость между любыми множествами объектов, даже если они имеют различную природу (лишь бы каждому значению аргумента соответствовало единственное значение функции).
.3 Формирование понятия «тригонометрические уравнения»
Тригонометрические уравнения - обязательная тема любого экзамена по математике. Основные приемы их решения - замена переменной и разложение на множители. Для успешного решения тригонометрических уравнений нужно хорошо знать тригонометрические формулы, причем не только основные, но и дополнительные (преобразование суммы тригонометрических функций в произведение и произведения в сумму, формулы понижения степени и другие).