ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 22.11.2023
Просмотров: 43
Скачиваний: 2
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Рассмотрим методы вычисления элементарных математических статистик, начав с выборочного среднего.
Выборочное среднее значение как статистический показатель представляет собой среднюю оценку изучаемого в эксперименте психологического качества. Эта оценка характеризует степень его развития в целом у той группы испытуемых, которая была подвергнута психодиагностическому обследованию. Сравнивая непосредственно средние значения двух или нескольких выборок, мы можем судить об относительной степени развития у людей, составляющих эти выборки, оцениваемого качества. Выборочное среднее определяется при помощи следующей формулы:
где - выборочная средняя величина или среднее арифметическое значение по выборке; n количество испытуемых в выборке или частных психодиагностических показателей, на основе которых вычисляется средняя величина; хk частные значения показателей у отдельных испытуемых. Всего таких показателей n, поэтому индекс k данной переменной принимает значения от 1 до n; принятый в математике знак суммирования величин тех переменных, которые находятся справа от этого знака.
Дисперсия как статистическая величина характеризует, на сколько частные значения отклоняются от средней величины в данной выборке. Чем больше дисперсия, тем больше отклонения или разброс данных. Иногда вместо дисперсии для выявления разброса частных данных относительно средней используют производную от дисперсии величину, называемую выборочное отклонение. Оно равно квадрат ному корню, извлекаемому из дисперсии, и обозначается тем же самым знаком, что и дисперсия, только без квадрата - :
Медианой называется значение изучаемого признака, которое делит выборку, упорядоченную по величине данного признака, пополам. Справа и слева от медианы в упорядоченном ряду остается по одинаковому количеству признаков.
Мода еще одна элементарная математическая статистика и характеристика распределения опытных данных. Модой называют количественное значение исследуемого признака, наиболее часто встречающееся в выборке. Иногда исходных частных первичных данных, которые подлежат статистической обработке, бывает довольно много, и они требуют проведения огромного количества элементарных арифметических операций. Для того чтобы сократить их число и вместе с тем сохранить нужную точность расчетов, иногда прибегают к замене исходной выборки частных эмпирических данных на интервалы. Интервалом называется группа упорядоченных по величине значений признака, заменяемая в процессе расчетов сред ним значением.
1.3 Вторичные методы обработки материалов психологических исследований
С помощью вторичных методов статистической обработки экспериментальных данных непосредственно проверяются, доказываются или опровергаются гипотезы, связанные с экспериментом. Эти методы, как правило, сложнее, чем методы первичной статистической обработки, и требуют от исследователя хорошей подготовки в области элементарной математики и статистики. Обсуждаемую группу методов можно разделить на несколько подгрупп:
1. Регрессионное исчисление.
2. Методы сравнения между собой двух или нескольких элементарных статистик (средних, дисперсий и т.п.), относящихся к разным выборкам.
3. Методы установления статистических взаимосвязей между переменными, например их корреляции друг с другом.
4. Методы выявления внутренней статистической структуры эмпирических данных (например, факторный анализ).
Регрессионное исчисление - это метод математической статистики, позволяющий свести частные, разрозненные данные к некоторому линейному графику, приблизительно отражающему их внутреннюю взаимосвязь, и получить возможность по значению одной из переменных приблизительно оценивать вероятное значение другой переменной.
Следующий метод вторичной статистической обработки, посредством которого выясняется связь или прямая зависимость между двумя рядами экспериментальных данных, носит название метод корреляций. Он показывает, каким образом одно явление влияет на другое или связано с ним в своей динамике. Подобного рода зависимости существуют, к примеру, между вели чинами, находящимися в причинно-следственных связях друг с другом. Если выясняется, что два явления статистически достоверно коррелируют друг с другом и если при этом есть уверенность в том, что одно из них может выступать в качестве причины другого явления, то отсюда определенно следует вывод о наличии между ними причинно-следственной зависимости.
Имеется несколько разновидностей данного метода: линейный, ранговый, парный и множественный. Линейный корреляционный анализ позволяет устанавливать прямые связи между переменными величинами по их абсолютным значениям. Эти связи графически выражаются прямой линией, отсюда название "линейный". Ранговая корреляция определяет зависимость не между абсолютными значениями переменных, а между порядковыми местами, или рангами, занимаемыми ими в упорядочен ном по величине ряду. Парный корреляционный анализ включает изучение корреляционных зависимостей только между парами переменных, а множественный, или многомерный, между многими переменными одновременно.
Глава 2. Практическая часть
2.1 Ранговая корреляция
В психологии часто возникает потребность анализа связи между переменными, которые не могут быть измерены в интервальной или реляционных шкалах, но тем не менее поддаются упорядочению и могут быть проранжированы по степени убывания или возрастания признака. Для определения тесноты связи между признаками, измеренными в порядковых шкалах, применяются методы ранговой корреляции. К ним относятся: коэффициенты ранговой корреляции Спирмена и Кендалла (используются для определения тесноты связи между двумя величинами) и коэффициент конкордации (устанавливает статистическую связь между несколькими признаками). Использование коэффициента линейной корреляции Пирсона в случае, когда о законе распределения и о типе измерительной шкалы отсутствует сколько-нибудь надежная информация, может привести к существенным ошибкам.
Методы ранговой корреляции могут быть использованы для определения тесноты связи не только между количественными переменными, но и между качественными признаками при условии, что их значения можно упорядочить и проранжировать. Эти методы также могут быть использованы применительно к признакам, измеренным в интервальных и реляционных шкалах, однако их эффективность в этом случае всегда будет ниже.
Коэффициент ранговой корреляции Спирмена. Каждая из двух совокупностей располагается в виде вариационного ряда с присвоением каждому члену ряда соответствующего порядкового номера (ранга), выраженного натуральным числом. Одинаковым значениям ряда присваивают среднее ранговое число.
Сравниваемые признаки можно ранжировать в любом направлении:
как в сторону ухудшения качества (ранг 1 получает самый большой, быстрый, умный и т.д. испытуемый), так и наоборот. Главное, чтобы обе переменные были проранжированы одинаковым способом.
Коэффициент ранговой корреляции Спирмена находится по формуле n
6 ⋅ ∑ d i2
rS = 1 − i =1, n −n3
где di - разность рангов для каждой i-пары из n наблюдений.
Если в вариационных рядах для X и Y встречаются члены ряда с одинаковыми ранговыми числами, то в формулу для коэффициента корреляции Спирмена необходимо внести поправки Tx и Ty на одинаковые ранги:
n
6 ⋅ ∑ d i2 l
rS = 1 − i =1, T = ∑ (t k − t k).
3
1
(n 3 − n) − (Tx + T y) k =1
2
Здесь l - число групп в вариационном ряду с одинаковыми ранговыми числами; tk - число членов в каждой из l групп.
Ранговый коэффициент корреляции Спирмена, как и линейный, изменяется от -1 до +1, однако значение рангового коэффициента корреляции Спирмена всегда меньше значения коэффициента линейной корреляции Пирсона: rS < r.
Проверка гипотезы о значимости коэффициента ранговой корреляции Спирмена проводится по-разному в зависимости от объема выборки.
1. Объем выборки больше 30 (n > 30).
Проверка нулевой гипотезы h0: с = 0 при альтернативной h1: с ≠ 0 осуществляется с помощью критерия Стьюдента и заключается в вычислении величины rS
t = ⋅ n−2,1 − rS2
имеющей распределение Стьюдента с df = n - 2 степенями свободы. Эмпирическое значение сравнивается с критическими значениями tб (n - 2).
Нулевая гипотеза с = 0 не отвергается, если эмпирическое значение попадает в область допустимых значений:
| t | ≤ t0,05 (df), df = n - 2.
Коэффициент ранговой корреляции Спирмена значимо отличается от нуля, если эмпирическое значение попадает в критическую область:
| t | > t0,01 (df), df = n - 2.
2. Очень малый объем выборки (n ≤ 30).
Проверка нулевой гипотезы осуществляется путем сравнения вычисленного коэффициента rS с критическими значениями rб (n), взятым из статистических таблиц для выбранного уровня значимости б и числа пар наблюдений n (табл.3.1). Нулевая гипотеза с = 0 не отвергается, если эмпирическое значение попадает в область допустимых значений:
| rS | ≤ r0,05 (n).
Коэффициент ранговой корреляции Спирмена значимо отличается от нуля, если вычисленное значение попадает в критическую область:
| rS | > r0,01 (n).
Таблица 3.1
Критические значения коэффициента ранговой корреляции Спирмена
α α α |
n n n |
0,05 0,01 0,05 0,01 0,05 0,01 |
7 0,745 0,893 15 0,518 0,654 23 0,415 0,531 |
8 0,690 0,857 16 0,500 0,632 24 0,406 0,520 |
9 0,663 0,817 17 0,485 0,615 25 0,398 0,510 |
10 0,636 0,782 18 0,472 0,598 26 0,389 0,500 |
11 0,609 0,754 19 0,458 0,582 27 0,383 0,491 |
12 0,580 0,727 20 0,445 0,568 28 0,375 0,483 |
13 0,555 0,698 21 0,435 0,555 29 0,368 0,474 |
14 0,534 0,675 22 0,424 0,543 30 0,362 0,466 |
В методике С.А. Будаси испытуемому предлагается проранжировать 20 качеств по степени желательности (ранг 20 присуждается самому желаемому качеству). Затем в другой колонке его просят проранжировать эти же качества по степени выраженности у него в данный момент (ранг 20 получает самое характйрное качество). На основе расчета коэффициента ранговой корреляции Спирмена делается вывод об уровне самооценки испытуемого. Результаты испытуемого С. О-ва приведены в таблице 3.2 Требуется рассчитать коэффициент корреляции Спирмена между выраженностью качеств у обследуемого испытуемого в данный момент и его идеальным представлением.
Решение:
Составляем расчетную таблицу, в которую заносим две ранговые последовательности (желаемую N и реальную N'), разности рангов d и d2.
Таблица 3.2
Расчет коэффициента ранговой корреляции Спирмена
Качества | N N’ d = N - N’ d2 |
уступчивость | 14 15 - 1 1 |
смелость | 15 18 - 3 9 |
вспыльчивость | 2 16 - 14 196 |
настойчивость | 13 13 0 0 |
нервозность | 1 7 - 6 36 |
терпеливость | 17 10 7 49 |
увлекаемость | 12 20 - 8 64 |
пассивность | 8 2 6 36 |
холодность | 10 19 - 9 81 |
энтузиазм | 9 17 - 8 64 |
осторожность | 16 4 12 144 |
капризность | 3 1 2 4 |
медлительность | 18 6 12 144 |
нерешительность | 7 11 - 4 16 |
энергичность | 20 12 8 64 |
жизнерадостность | 19 8 11 121 |
мнительность | 4 3 1 1 |
упрямство | 5 9 - 4 16 |
беспечность | 11 14 - 3 9 |
застенчивость | 6 5 1 1 |
| 1056 |
|
Значение коэффициента корреляции Спирмена подсчитываем по формуле
6 ⋅ 1056
rS = 1 − 3 = 0, 206.
20 − 20
Вследствие малого n (меньше 30) гипотезу о значимости коэффициента корреляции проверяем с помощью статистических таблиц. Для n = 20 имеем (см. табл.3.1):
h0? h1
⎯⎯|⎯⎯⎯⎯⎯|⎯⎯⎯⎯⎯⎯|⎯⎯⎯⎯⎯⎯→
0, 206 0,445 0,568 r
Значение коэффициента корреляции rS = 0, 206 попадает в область допустимых
значений, что не позволяет отвергнуть нулевую гипотезу. Коэффициент корреляции не отличается от нуля.
Вывод:
Отсутствует связь между выраженностью качеств у обследуемого испытуемого в данный момент и идеальным представлением.